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CHAPTER I

Introduction to Wolfram Mathematica 10.0

1.1 Basic Calculation

Mathematica is a convenient tools for doing basic mathematics. You may

use Mathematica like a calculator. Type your equation, press Shift + Enter to

obtain the answer.

After you open the Mathematica and run a first calculation, you need to wait

a few seconds before the Kernel is loaded. When the kernel keep running, your

calculation will be fast; hence, keep it running. It will run as long as the Front

End is open. When you close the Front End, the Kernel will be immediately

closed.

We start first Mathematica calculations. Type 1+3 and run the command by

pressing Shift + Enter . (See Input[1] and Output[1])

Second, type 6− 3 and run the command. (See Input[2] and Output[2]).

Next, type 3*5 and 3 5 and run both commands. (See Input[3], Output[3], In-

put[4] and Output[4]). Both output are 15 because you can multiply two numbers

by using * or a space.

Figure 1.1: Add, subtract and multiply two numbers
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The imaginary unit is represented by I. You can calculate any complex num-

ber by using I for imaginary part. For example, type (1 + I)(2 − I) and press

Shift + Enter to obtain the answer. See Figure 1.2

Figure 1.2: Complex number calculation

Next, you may try dividing two numbers by using symbol \. Suppose that

you want to find the answer of 8÷ 2. You can find the answer by typing 8\2 and

press Shift + Enter . See Figure 1.3.

The order in calculations in Mathematica is normal. That is, Mathematica will

give more priority to multiplication and division than summation and subtract.

To change the order, you have to use brackets. When there is no brackets, the

calculation will start from the left.

Figure 1.3: Divide two numbers

You can use the formula x∧y to obtain x to the power y. For example, type

x∧y to calculate 34 which is 81. To find
√
x, you may use the command Sqrt[x].

1.2 Matrix operations

Matrix operation in Mathematica can do both nummeric and symbolic matri-

ces. It will apply highly efficient algorithms. You calculate a complicated matrix

operation in a second by using the following function
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Figure 1.4: List of matrix operations

For Mathematica language, a matrix is a list of lists. We can assign a matrix

m by writing a list of lists and when we like see m as a matrix, we need the

function MatrixForm.

Figure 1.5: How to build a matrix

The transpose of an m×n matrix is an n×m matrix obtained from interchang-

ing the rows and columns in the matrix. The conjugate transpose of an m × n

matrix with complex entries is the n × m matrix obtained from the matrix by

taking the transpose and then taking the complex conjugate of each entry. When

all elements of matrices are real numbers, transpose and conjugate transpose are

the same.

Figure 1.6: Transpose and conjugate transpose
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To find determinant and an inverse matrix, we just apply the function Det

and Inverse, respectively.

Figure 1.7: Determinant and an inverse matrix

The function Minor gives all possible minors of a matrix while Tr gives the

summation of all elements in the main diagonal. The rank of a matrix is the

number of linearly independent rows or columns.

Figure 1.8: Minor, Tr and MatrixRank

1.3 Basic plotting

Plotting a graph as a series of one or more points, lines, curves or areas rep-

resents the equations in comparison with one or more variables. In other words,

the plotting displays on a Cartesian coordinate in several ways which depends on

what you want to interpret.

Plotting by using Mathematica is quite easy. We can do a basic plotting by

using the function Plot. The syntax is in the form Plot[f,{x,min,max}] First,

plot cos(x) as a function of x from 0 to 2π.
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Figure 1.9: A cosine graph

In the second example, we plot a graph of tan(x) as a function of x from −4

to 4. According to the default, the plotting have singularities. Mathematica will

try to choose appropriate scales.

Figure 1.10: A tan graph with singularities

In case, we also can plot tan(x) without singularities by using the Exclusions

option.

Figure 1.11: A tan graph without singularities
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In the next example, we plot cos(x), cos(2x) and cos(3x) as a function of x

from 0 to 2π in the same axis. A different color will automatically be used for

each function.

Figure 1.12: Three graphs in same axis

1.4 Three-dimensional plotting

To do 3-dimension plotting, we use the function Plot3D. For Mathematica,

it is not difficult to plot 3-dimension graph. For example, we plot z = sin(xy) as

a function of x and y from −3 to 3 and −2 to 2, respectively.

Figure 1.13: Function z = sin(xy)

Next, we want to plot z = x2 + y2 as a function of x and y from −3 to 3 and

−2 to 2, respectively.
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Figure 1.14: Function z = x2 + y2

Next, we want to plot z = x+ y as a function of x and y from −3 to 3 and −2

to 2, respectively.

Figure 1.15: Function z = x+ y

1.5 Parametric plotting

Parametric equation of a curve show the coordinate of points of a curve as

functions of a variable, which is called parameter. For instant, x = sin(t) and

y = cos(t) are parametric equations of a unit circle; t is the parameter of the

equations. Notice that x2 + y2 = sin2(t) + cos2(t) = 1.

We usually use the valuable t as the parameter because the parametric equa-

tions often represent a physical movement in time. However, the parameter can
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represent some other physical values such as a geometric valuable.

ParametricPlot generates a parametric plot of a curve with coordinates f(u)

and f(u) as a function of a parameter u. In Figure 1.16, we draw a unit circle

with coordinates cos(t) and sin(t) where t from 0 to 2π

Figure 1.16: A unit circle constructed by parametric plot

We can change coordinate functions to obtain a different line. In Figure 1.17,

we draw a curve with coordinates cos(t) and sin(4t) where t from 0 to 2π.

Figure 1.17: Another curve constructed by parametric plot



9

ParametricPlot3D generates a parametric plot of a 3-dimensional curve. We

can draw a three dimensional line in by using this function. For example, we draw

a line with coordinate (x, y, x) = (sin(u), cos(u), u
30

where u from 0 to 50.

Figure 1.18: A line constructed by ParametricPlot3D

Suppose that we are trying to draw a cylinder, which is a three-dimensional

surface. We can easily draw it by using the function ParametricPlot3D. Figure

1.19 shows a surface with coordinate (x, y, x) = (cos(u), sin(u), sin(v) where u and

v from 0 to 2π and −π to π, respectively.

Figure 1.19: Surface constructed by ParametricPlot3D
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The next example shows wonderful surface created by usingParametricPlot3D.

Figure 1.20: Wonderful surface constructed by ParametricPlot3D



CHAPTER II

Mathematica in Graph Theory

2.1 How to draw a graph

In graph theory, a graph is a figure of a set of nodes where some nodes are

linked by lines. The nodes sometimes are called vertices and the lines sometimes

are called edges. The definition is the objects in discrete mathematics.

The edges in each graph can be directed or undirected, which depend on what

the graph are represented. For example, if the vertices represent football team at

a tournament and there is an edge between two teams if they meet each other,

then this is an undirected graph becasue if team A meets team B, then team B

also meet team A. However, if there is an edge from team A to team B when

team A defeats team B, then this graph is directed because winning does not a

symmetric relation. The first type of graphs is called an undirected graph and

the edges are called undirected edges while the second type of graphs is called an

directed graph and the edges are called directed edges.

In formal definition of graphs, a graph G is an order pair (V(G),E(G)) where

V (G) is the set of vertices of G and E(G) is the set of edges of G. Without said

otherwise, a graph is simple and undirected.

The other type of graph is obtained from the different type of the edge set.

In more generalized definitions, E(G) allows a loop or multiple edges. The graph

which allows a loop and multiple edges is callled a multigraph.
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A loop is an edge whose both end points are on the same vertex.

Figure 2.1: A loop

Multiple edges are two or more edges that whose endpoints are on the same

two vertices

Figure 2.2: multiple edges

Throughout this article, our graphs are always simple and undirected because

we are in coloring topics. In an undirected graph, if there is an edge between

vertex 1 and vertex 2, we often use the notation 1 ↔ 2

Wolfram mathematica 10.0 has several functions to help us construct graphs.

The function Graph is easiest way to draw a general graph. For example, if we

want to draw a paw.

Figure 2.3: A paw graph

We just labels all vertices with different numbers. Normally, we use 1, 2, . . . , n
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for an n-vertex graph.

Figure 2.4: A paw graph with numbers on vertices

To obtain the graph, we write

Graph[1 < − > 2, 2 < − > 3, 3 < − > 1, 1 < − > 4]

The following figures show what we obtain.

Figure 2.5: A paw and its code.

2.2 Frequently used functions

The most interesting things is the commands under the figures. Sometimes,

after we draw a big graph but we do not sure its properties. We can check its

properties by using the functions.

For example, we can check whether a paw is acyclic by clicking on a word

acyclic? to get the answer shown belowed.

According to Figure 2.6, the answer is false. That is, the graph is not a cyclic

becasue it contains a cycle.
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Figure 2.6: An answer after clicking on acyclic?

In case we want to check other properties, we can click the button beside the

word acyclic? to obtain other functions.

Figure 2.7: List of functions

The following are lists of properties we can check by using the first tab in

Wolfram Mathematica 10.0.

• acyclic : Check whethere a graph contains a cycle.

• bipartite : Check whethere a graph contains has no odd cycle.

• complete : Check whether a graph is a complete graph.

• connected : Check whether a graph is connected

• directed : Check whether a graph is directed.

• empty : Check whether a graph is empty.

• hamiltonian : Check whether a graph is hamiltonian.

• simple : Check whether a graph is simple.



15

• loop free : Check whether a graph has no loop.

• undirected : Check whether a graph is undirected.

• weighted : Check whether a graph is weighted.

On the second tab, you will find some useful functions related to edges of

graphs such as the number of edges. On the third tab, you will find several

useful functions related to vertices of graphs such as the number of vertices and

vertex degree. On the fourth tab, you can obtain adjacency matrices from these

functions.

2.3 More useful functions

Surprisingly, when we click on More... under the figure, we obtain several

useful functions in graph theory.

Figure 2.8: A number of useful functions

The useful functions are categorized into 4 groups. The first group is display.

This group consists of two main functions which are add vertex labels and add

edge labels. The two functions are quite straightforward because the tools are

applied to add labels to vertices or edges.

The second group is graph part. This group consists of twelve main functions

which are shown in the following list.
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• edges

• vertices

• connected component

• find clique

• find edge cover

• find independent edge set

• find independent vertex set

• find vertex cover

• find graph center

• find graph periphery

• k-core components

• Shortest path

For instant, we want to find an edge cover of the paw. We just click on find

edge cover to get an answer. Recall that an edge cover is a set of edges such

that all edges are in the set or are incident to an edge in the set.

Figure 2.9: An edge cover of the paw
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The function will give us one of edge covers.

Similarly, if we want to find a vertex cover of the paw, then we just click on

find vertex cover to get an answer. Recall that a vertex cover is a set of vertices

such that all vertices are in the set or are adjacent to a vertex in the set.

Figure 2.10: A vertex cover of the paw

The function will give us one of vertex cover.

The third group is graph properties consists of six main functions which are

shown in the following list.

• acyclic?

• adjacency metrix

• betweeness centrality

• distance metrix

• graph diameter

• graph radius

The functionAcyclic? and its similar functions have already mentioned in the

beginning of this section. We raise the function graph diameter as an example

of this group. Recall that the graph diameter is the longest shortest path or a

graph. We can easily find the graph diameter by using this function
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Figure 2.11: The graph diameter of a paw

According to the figure, it is easy to see that the diameter of a paw is 2.

The last group is related graph consists of five main functions which are shown

in the following list.

• directed graph

• graph complement

• graph power

• index graph

• line graph

The function directed graph constructs a directed graph from an undirected

graph.

Figure 2.12: A directed paw graph

A graph complement G′ is obtained from a graph G such that V (G′) = V (G)

and e ∈ E(G′) if and only if e ̸∈ E(G)

A k-power graph Gk is the graph obtained from a graph G such that V (Gk) =

V (G) and two vertices are adjacent when their distant in G is at most k.
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Figure 2.13: The graph complement of a paw

Figure 2.14: A 2-power graph of a paw

The function index graph is not in graph theory but it is defined to relabel

the name of vertices

A line graph L(G) is a graph obtained from a graph G such that each vertex

of L(G) represents an edge of G and two vertices of L(G) are adjacent if and only

if their corresponding edges are incident in G.

Figure 2.15: A Line graph of a paw



CHAPTER III

Classes of graphs with Mathematica

When we try to make any conjecture in Graph Theory, we usually test the

conjecture in a well-know graph. In order to check it, we need to draw the graph.

Unfortunately, sometimes, we have to draw a lot of graphs and some graphs are

too large. Thanks to Mathematica, we can easily draw a large well-known graph

in a second.

3.1 Path

A path in a graph is a finite or infinite sequence of edges which connect a

sequence of vertices which, by most definitions, are all distinct from one another.

In a directed graph, a directed path (sometimes called dipath) is again a sequence

of edges (or arcs) which connect a sequence of vertices, but with the added restric-

tion that the edges all be directed in the same direction. A path with n vertices

is denoted by Pn

Paths are fundamental concepts of graph theory, described in the introductory

sections of most graph theory texts.

We can use Mathematica to draw a path Pn by typingPathGraph[v1, v2, . . . , vn].

For example, we can draw a path P5 by typing PathGraph[a, b, c, d, e]. The

name of five vertices are a, b, c, d and e.

Figure 3.1: Path P5
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3.2 Cycle

In graph theory, a cycle or circular graph is a graph that consists of a single

cycle, or in other words, some number of vertices connected in a closed chain. The

cycle graph with n vertices is called Cn. The number of vertices in Cn equals the

number of edges, and every vertex has degree 2; that is, every vertex has exactly

two edges incident with it.

There are many synonyms for cycle. These include simple cycle graph and

cyclic graph, although the latter term is less often used, because it can also refer

to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or

n-gon are also often used. A cycle with an even number of vertices is called an

even cycle; a cycle with an odd number of vertices is called an odd cycle.

Thanks to Mathematica, we can easily draw a cycle with n-vertices by typing

CycleGraph[n]. For example, we can draw C5 by typing CycleGraph[5] to

obtain the figure.

Figure 3.2: Cycle C5 obtaining from Mathematica

Suppose we want to draw C3, C5, . . . , C10 in the same figure. We type Ta-

ble[CycleGraph[i], i, 3, 10] to obtain the figure.



22

Figure 3.3: Eight Cycles in one figure

3.3 Complete graph

A complete graph is a simple undirected graph in which every pair of distinct

vertices is connected by a unique edge. A complete digraph is a directed graph in

which every pair of distinct vertices is connected by a pair of unique edges (one

in each direction).

The complete graph on n vertices is denoted by Kn.

Kn has n(n1)
2

edges (a triangular number), and is a regular graph of degree

n − 1. All complete graphs are their own maximal cliques. They are maximally

connected as the only vertex cut which disconnects the graph is the complete set

of vertices. The complement graph of a complete graph is an empty graph. If the

edges of a complete graph are each given an orientation, the resulting directed

graph is called a tournament.

We can easily draw a complete graph with n vertices by using the function

CompleteGraph[n]

For example, we want to draw a complete graph with 5 vertices. Instead of

drawing five vertices and ten edges, we just type CompleteGraph[5] to obtain

the graph.
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Figure 3.4: Complete graph K5 obtaining from Mathematica

Suppose that we want to draw a complete graph with 15 vertices. Thanks to

Mathematica, we do not need to draw
(
15
2

)
= 105 edges. We just type Complete-

Graph15] to obtain the graph.

Figure 3.5: Complete graph K15 obtaining from Mathematica

Sometimes, we want to draw several graph in a figure. Suppose we want to

draw K3, K4, . . . , K10 in the same figure. We just type

Table[CompleteGraph[i, P lotLabel− > Subscript[K, i]], i, 3, 10]

to obtain the figure.

3.4 Complete bipartite graph

A complete bipartite graph or biclique is a special kind of bipartite graph where

every vertex of the first set is connected to every vertex of the second set

A complete bipartite graph is a graph whose vertices can be partitioned into
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Figure 3.6: Eight complete graphs in one figure

two subsets V1 and V2 such that no edge has both endpoints in the same subset,

and every possible edge that could connect vertices in different subsets is part

of the graph. That is, it is a bipartite graph (V1, V2, E) such that for every two

vertices v1 ∈ V1 and v2 ∈ V2, v1v2 is an edge in E. A complete bipartite graph

with partitions of size |V1| = m and |V2| = n, is denoted Km,n; every two graphs

with the same notation are isomorphic.

Some complete bipartite graphs have its own special names as shown in the

following.

• K1,k is called a star for any number k.

• K1,3 is called a claw.

• K3,3 is called the utility graph.

This usage of the utility graph comes from a standard mathematical puzzle in

which three utilities must each be connected to three buildings; it is impossible

to solve without crossings due to the nonplanarity of K3,3.

We can easily draw a complete bipartite graph Ka,b vertices by using the

function

CompleteGraph[{a, b}]
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For example, we want to draw a complete bipartite graph K3,4. Instead of

drawing seven vertices and twelve edges, we just type CompleteGraph[{3,4}]

to obtain the graph.

Figure 3.7: Complete bipartite graph K3,4

Similarly, we can easily draw a complete graph K5,8 by typing Complete-

Graph[{5,8}].

Figure 3.8: Complete bipartite graph K5,8

Again, we want a list of complete bipartite graph in one figure. Suppose that

we wantK3,3, K4,4, . . . , K10,10 in a figure. We just typeTable[CompleteGraph[{i,

i}, i, 3, 10] to obtain the figure.

3.5 Complete multiparite graph

A complete k-partite graph is a graph that can be partitioned into k indepen-

dent sets, so that every pair of vertices from two different independent sets have

different colors. These graphs are described by notation with a capital letter K
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Figure 3.9: Eight complete bipartite graphs in one figure

subscripted by a sequence of the sizes of each set in the partition. For instance,

K2,2,2 is the complete tripartite graph of a regular octahedron, which can be par-

titioned into three independent sets each consisting of two opposite vertices. A

complete multipartite graph is a graph that is complete k-partite for some k.

Thanks to Mathematica, we can easily draw complete multipartite graphs by

using the same function. For instant, we type CompleteGraph[{2,2,2}] to

obtain K2,2,2 as shown in Figure 3.10.

Figure 3.10: Complete tripartite graph K2,2,2

When we want to draw complete multipartite graph K4,5,6,7, we type Com-

pleteGraph[{4,5,6,7}] to obtain the figure.

3.6 Star

A star Sk is the complete bipartite graph K1,k−1; a tree with one internal node

and k− 1 leaves (but, no internal nodes and k leaves when k ≤ 2). Alternatively,
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Figure 3.11: Complete multipartite graph K4,5,6,7

some authors define Sk to be the tree of order k + 1 with maximum diameter 2;

in which case a star of k > 3 has k1 leaves.

A star with 3 edges is called a claw.

The star Sk is edge-graceful if and only if k is odd. It is an edge-transitive

matchstick graph, and has diameter 2 (when k > 2), girth ∞ (it has no cycles),

chromatic index k − 1, and chromatic number 2 (when k ≥ 2). Additionally, the

star has large automorphism group, namely, the symmetric group on k−1 letters.

Stars may also be described as the only connected graphs in which at most

one vertex has degree greater than one

We can easily draw a star Sn by typing StarGraph[n]. For instance, we can

draw stars S8 and S10 by typing StarGraph[8] and StarGraph[10] to obtain

the graphs.

Figure 3.12: Stars S8 and S10

Several graph invariants are defined in terms of stars. Star arboricity is the
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minimum number of forests that a graph can be partitioned into such that each

tree in each forest is a star, [8] and the star chromatic number of a graph is the

minimum number of colors needed to color its vertices in such a way that every

two color classes together form a subgraph in which all connected components

are stars.[5] The graphs of branchwidth 1 are exactly the graphs in which each

connected component is a star.

The following figure are beautiful big star creating by using Mathematica.

Figure 3.13: Stars S45 and S80

3.7 Turan graph

The Turan graph Tn,r is a complete multipartite graph formed by partitioning

a set of n vertices into r subsets, with sizes as equal as possible, and connecting

two vertices by an edge whenever they belong to different subsets. The graph will

have (n mod r) subsets of size ⌈n
r
⌉, and r− (n mod r) subsets of size ⌊n

r
⌋. That

is, it is a complete r-partite graph K⌈n/r⌉,⌈n/r⌉,...,⌊n/r⌋,⌊n/r⌋. Each vertex has degree

either n−⌈n/r⌉ or n−⌊n/r⌋. The number of edges is 1
2
(n2− (n mod r)⌈n/r⌉2−

(r − (n mod r))⌊n/r⌋2) ≤
(
1− 1

r

)
n2

2
. It is a regular graph, if n is divisible by r.

Several choices of the parameter r in a Turan graph lead to notable graphs

that have been independently studied.

The Turn graph T2n,n can be formed by removing a perfect matching from a
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complete graph K2n. As Roberts (1969) showed, this graph has boxicity exactly

n; it is sometimes known as the Roberts graph. This graph is also the 1-skeleton

of an n-dimensional cross-polytope; for instance, the graph T6,3 = K2,2,2 is the

octahedral graph, the graph of the regular octahedron. If n couples go to a party,

and each person shakes hands with every person except his or her partner, then

this graph describes the set of handshakes that take place; for this reason it is

also called the cocktail party graph.

The Turan graph Tn,2 is a complete bipartite graph and, when n is even, a

Moore graph. When r is a divisor of n, the Turan graph is symmetric and strongly

regular, although some authors consider Turan graphs to be a trivial case of strong

regularity and therefore exclude them from the definition of a strongly regular

graph.

Thanks to mathematica, we can easily draw a Turan graph Tn,k by using

function TuranGraph[n,k]

We may substitute 20 and 3 for n and k to obtain a Turan graph T20,3.

Figure 3.14: Turan graph T20,3

We may substitute 30 and 4 for n and k to obtain a Turan graph T30,4.



30

Figure 3.15: Turan graph T30,4

3.8 Wheel graph

A wheel graph Wn is a graph with n+1 vertices (n3), obtained from connecting

a single vertex to all vertices of a cycle with n vertices. Some authors instead use

n to refer to the number of vertices of wheel graphs, so that their Wn is the graph

that we denote Wn−1. The chromatic number of Wn is three when n is even and

four when n is odd.

In mathematica, a wheel graph Wn is a graph with n vertices obtained from

connecting a single vertex to all vertices of a cycle with n− 1 vertices.

We can easily draw a wheel Wn by typing WheelGraph[n]. For instance, we

can draw wheel graphs W20 and W30 by typing WheelGraph[20] and Wheel-

Graph[30] to obtain the graphs.

Figure 3.16: Wheel graphs W20 and W30

Suppose we want to draw W5,W6, . . . , K10 in the same figure. We just type

Table[WheelGraph[i, P lotLabel− > Subscript[W, i]], i, 5, 10]
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to obtain the figure.

Figure 3.17: Six wheel graphs in one figure

3.9 Hypercube graph

A hypercube graph Qn is a regular graph with 2n vertices, (2n−1n edges. It

can be obtained as the one-dimensional skeleton of the geometric hypercube; for

instance, Q3 is the graph formed by the 8 vertices and 12 edges of a three-

dimensional cube. Alternatively, it can be obtained from the family of subsets

of a set with n elements, by making a vertex for each possible subset and joining

two vertices by an edge whenever the corresponding subsets differ in exaclty one

element.

Hypercube graphs should not be confused with cubic graphs, which are graphs

that have exactly three edges touching each vertex. The only hypercube, Qn that

is a cubic graph is the cubical graph, Q3.

The hypercube graph Qn usually be constructed from the family of subsets of

a set with n elements, by making a vertex for each possible subset and joining

two vertices by an edge if and only if the corresponding subsets differ in exactlyo

one element. Moverover, it can be constructed using 2n vertices labeled with

n-bit binary numbers and connecting two vertices by an edge if and only if the

corresponding binaries differ in exactly one element. These two constructions are

closely related.

Furthermore, Qn+1 can be constructed from the disjoint union of two hyper-

cubes Qn, by adding an edge from each vertex in one copy of Qn to the corre-
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sponding vertex in the other copy. The joining edges form a perfect matching.

The last definition of Qn is the Cartesian product of n two-vertex complete

graphs K2. More generally the Cartesian product of copies of a complete graph is

called a Hamming graph; the hypercube graphs are examples of Hamming graphs.

Thanks to Mathematica, we can easily draw a Hypurcube graph Qn by typing

HypercubeGraph[n]. For example, we just type HypercubeGraph[3] and

HypercubeGraph[4] to obtain Q3 and Q4, respectively.

Figure 3.18: Hypercube graphs Q3 and Q4

Even we when we want to draw a big hypercube graph such as Q6, we just

type HypercubeGraph[6] to obtain the graph.

Figure 3.19: Hypercube graph Q6



33

3.10 Grid graph

A grid graph, lattice graph, or mesh graph, is a graph whose drawing, embedded

in some Euclidean space Rn, forms a regular tiling. This implies that the group

of bijective transformations that send the graph to itself is a lattice in the group-

theoretical sense. A k-dimensional grid graph with n1 × n2 × . . . nk vertices are

denoted by Gn1,n2,...,nk
.

Thanks to Mathematica, we can easily draw a grid Gn1,n2,...,nk
by typing

GridGraph[{n1, n2, . . . , nk}]. We can draw a grid graph G3,3,3 and G3,3,3,3 by

typing GridGraph[{3,3,3}] and GridGraph[{3,3,3,3}]

Figure 3.20: Grid graphs G3,3,3 and G3,3,3,3

Typically, no clear distinction is made between such a graph in the more

abstract sense of graph theory, and its drawing in space (often the plane or 3D

space). This type of graph may more shortly be called just a grid, lattice, or

mesh. Moreover, these terms are also commonly used for a finite section of the

infinite graph, as in ”an 88 square grid”.

The term lattice graph has also been given in the literature to various other

kinds of graphs with some regular structure, such as the Cartesian product of a

number of complete graphs.

A common type of a lattice graph (known under different names, such as

square grid graph) is the graph whose vertices correspond to the points in the
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plane with integer coordinates, x-coordinates being in the range 1, 2, . . . , n, y-

coordinates being in the range 1, 2, . . . , ...,m, and two vertices are connected by

an edge whenever the corresponding points are at distance 1.

We can draw a grid graph G3,6 and G5,8 by typing GridGraph[{3,6}] and

GridGraph[{5,8}]

Figure 3.21: Grid graphs G3,6 and G5,8

Even a big graph such that G10,20, we can obtain the graph in a second by

typing G10,20.

Figure 3.22: Grid graphs G10,20

3.11 Knight tour graphs

A knight’s tour is a sequence of moves of a knight on a chessboard such that

the knight visits every square only once. If the knight ends on a square that is one

knight’s move from the beginning square (so that it could tour the board again

immediately, following the same path), the tour is closed, otherwise it is open.

The knight’s tour problem is the mathematical problem of finding a knight’s

tour. Creating a program to find a knight’s tour is a common problem given
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to computer science students.[3] Variations of the knight’s tour problem involve

chessboards of different sizes than the usual 8 × 8, as well as irregular (non-

rectangular) boards.

Figure 3.23: A knight’s tour on 8× 8 chessboard

In graph theory, a knight graph, or a knight tour graph, is a graph that repre-

sents all legal moves of the knight chess piece on a chessboard where each vertex

represents a square on a chessboard and each edge is a legal move. More specifi-

cally, an n×m knight’s tour graph is a knight’s tour graph of an n×m chessboard.

For a n × m knight’s tour graph the total number of vertices is simply nm.

For a n× n knight’s tour graph the total number of vertices is simply n2 and the

total number of edges is 4(n− 2)(n− 1).

To draw a knight graph, we need to think how to find a knight tour on n×m

board. It is not easy and it may take a long time. However, we can find an n×m

knight’s graph in second by using the function KnightTourGraph[n,m]

For example, we can draw a 4 × 4 knight’s graph and a 5 × 4 knight’s graph

by typing KnightTourGraph[4,4] and KnightTourGraph[5,4], respectively.

The following figure is a 14×14 knight’s graph crating by using mathematica.
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Figure 3.24: 4× 4 knight’s graph and 5× 4 knight’s graph

Figure 3.25: A 14× 14 knight’s graph

3.12 Harary graph

The Harary graph Hk,n is a particular example of a k-connected graph with n

graph vertices having the smallest possible number of edges. The smallest number

of edges possible, as achieved by the Harary graph Hk,n, is ⌈kn
2
⌉.

We can easily draw the Harary graph Hk,n by using the function Harary-

Graph[k,n]. For example, we substitute k and n by 4 and 8, respectively to

obtain Harary graph H4,8.

Similarly, we can typeHararyGraph[6,11] and HararyGraph[8,15] to ob-

tain Harary graphs H6,11 and H8,15, respectively.
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Figure 3.26: Harary graph H4,8

Figure 3.27: Harary graphs H6,11 and H8,15

3.13 Circulant graph

A circulant graph Cn(k) is an n-vertex with V (G) = {v1, v2, . . . , vn} such that

vi and vj are adjacent if and only if |i− j| = k

We can draw a circulant graph Cn(k) by using functionCirculantGraph[n,k].

For example, we can draw circulant graphs C8(3) and C10(4) by using functions

CirculantGraph[8,3] and CirculantGraph[10,4] as showning the figure.

Figure 3.28: Circulant graphs C8(3) and C10(4)
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It is also easy when we want to create a beautiful big circulant graph such as

C30(6) by using function CirculantGraph[30,6].

Figure 3.29: Circulant graph C30(6)

A generalized circulant graph Cn(j1, j2, . . .) is an n-vertex with V (G) = {v1, v2, . . . , vn}

such that vi and vj are adjacent if and only if |i− j| ∈ {j1, j2, . . .}.

Similarly, we can easily draw a generalized circulant graph Cn(j1, j2, . . .) by

using function CirculantGraph[n,{j1, j2, . . .}].

For example, we useCirculantGraph[20,{3, 5}] andCirculantGraph[25,{2, 4, 6}]

to construct two generalized circulant graphs as shown in Figure 3.30

Figure 3.30: Generalized circulant graphs C20({3, 5}) and C25({2, 4, 6})

3.14 Peterson graph

In the mathematical field of graph theory ample for many problems in graph

theory. The Petersen graph is named for Julius Petersen, who in 1898 constructed

it to be the smallest bridgeless cubic graph with no three-edge-coloring.
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Figure 3.31: the Petersen graph

Although the graph is generally credited to Petersen; however, it first appeared

12 years befored, by A.B. Kempe (1886). Kempe noticed that its vertices can

represent the ten lines of the Desargues configuration, and its edges represent

pairs of lines that do not meet at one of the ten points of the configuration.

Donald Knuth says that the Petersen graph is a remarkable configuration that

serves as a counterexample to many optimistic predictions about what might be

true for graphs in general.

The Petersen graph is nonplanar. Any nonplanar graph has the complete graph

K5, or the complete bipartite graph K3,3 as a minor, but the Petersen graph has

both graphs as minors. The K5 minor can be formed by contracting the edges

of a perfect matching. The K3,3 minor can be formed by deleting one vertex (for

instance the central vertex of the 3-symmetric drawing) and contracting an edge

incident to each neighbor of the deleted vertex.

The generalized Petersen graphs Pnk
are a family of cubic graphs formed by

connecting the vertices of a regular n-gon to the corresponding vertices of a cir-

culant graph Cn(k). They include the Petersen graph and generalize one of the

ways of constructing the Petersen graph. The generalized Petersen graph family

was introduced in 1950 by H. S. M. Coxeter and these graphs were given their

name in 1969 by Mark Watkins.



40

Thanks to Mathematica, we can easily draw generalized Petersen graphs Pn,k

by using the function PetersenGraph[n,k].

For instant, we can apply the functionsPetersenGraph[7,3] andPetersenGraph[8,5]

to construct generalized Petersen graphs P7,3 and P8,5, respectively.

Figure 3.32: Generalized Petersen graphs P7,3 and C8,5

Suppose that we would like to draw a big generalized Petersen graph such as

P25,7. We just type PetersenGraph[25,7] to draw the graph.

Figure 3.33: The generalized Petersen graph P25,7



CHAPTER IV

Game coloring

4.1 Definition and background

Two players, Alice and Bob, alternatively color vertices of a graph using a

fixed set of colors with Alice staring first so that no two adjacent vertices receive

the same color. Alice wins if all vertices are successfully colored and Bob win if,

at some time before all vertices is completely colored, one of the players has no

legal move. The game chromatic number of a graph G, denoted by χg(G), is the

least number of colors such that Alice has a winning strategy.

The well-known game coloring was invented by Steven J. Bram and was pub-

lished in 1981 by Martin Gardner [6]. Bodlaender [2] reinvented this game in

1991. Define χg(G) = max{χg(G)|G ∈ G}. The game chromatic number of sev-

eral classes of graphs are investigated. For example, χg(F) = 4 when F is the

class of forests [4], 6 ≤ χg(OP) ≤ 7 when OP is the class of outerplanar graphs [7]

[9], 8 ≤ χg(P) ≤ 17 when P is the class of planar graphs [9] [14], χg(KT ) = 3k+2

when k ≥ 2 and KT is the class of k-trees [12] [15].

In 2007, Bartnicki, Brear, Grytczuk, Kove, Miechowicz and Peterin [1] in-

vestigated the game chromatic number of the Cartesian product of two graphs.

The Cartesian product G□H is the graph with vertex set V (G) × V (H) where

two vertices (u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and

v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). In [1], the authors proved that

χg(G□H) is not bounded above in term of χg(G) and χg(H). However, Zhu [13]
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found the the upper bound of χg(G□H) in terms of the game chromatic number

of G and acyclic chromatic number of H. In [1], Bartnicki et. al. also gave the

exact values of χg(P2□Pn), χg(P2□Cn) and χg(P2□Kn). Later, Sia [11] found the

exact value of χg(Sm□Pn), χg(Sm□Cm), χg(P2□Wn) and χg(P2□Km,n). In [10],

the author proved that χg(Cm□Cn) ≤ 5 and χg(C2m□Cn) = 5 for m ≥ 3 and

n ≥ 7.

The degree of a vertex v, denoted by d(v), of a graph is the number of edge

incident to v. The maximum degree of a graph G, denoted by ∆(G), is the

maximum degree of its vertices.

The next remark will introduce a relation between χg(G) and ∆(G).

Remark 4.1. Let G be a graph. Then χg(G) ≤ ∆(G) + 1.

Proof. During the game, suppose that a player want to color a vertex, say v. Since

d(v) ≤ ∆(G) < ∆(G) + 1, there is available color c for v. Hence, the player can

label vertex v by using color c.

4.2 The game chromatic number of paths

A path in a graph is a finite or infinite sequence of edges which connect a

sequence of vertices which, by most definitions, are all distinct from one another.

A path with n vertices is denoted by Pn

Theorem 4.2. Let n be a positive number and Pn be a path with n vertices Then

χg(Pn) =



1 ;n = 1

2 ;n = 2, 3

3 ;n ≥ 4

Proof. Denote the vertices of the fiber of Pn by u1, u2, . . . , un
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Case 1. n = 1. Alice chooses any color to label u1. Then her goal is achieved.

Case 2. n = 2. To label P2, it requires at least two colors because u1 and

u2 need different colors. Suppose that there are two available colors. First, Alice

labels u1 by color 1. By the game rule, Bob must use another color to label u2;

hence, Alice can achieves her goal.

Case 3. n = 3. To label P3, it also requires at least two colors. Suppose that

there are two available colors. First, Alice labels u2 by color 1. Without loss of

generality, Bob has to label u1 by color 2. Finally, Alice labels u3 by color 2;

hence, Alice wins.

Case 4. n ≥ 4. If there are three available colors. All vertices of Pn can be

labeled because ∆(Pn) = 2 < 3. Suppose that there are only two available colors.

On the first move, if Alice labels vi by color 1, then Bob chooses to label vi−2 or

vi+2 by color 2. Then, vi−1 or vi+1 cannot be labeled. Hence, Bob wins.

4.3 The game chromatic number of stars

A star Sk is the complete bipartite graph K1,k−1; a tree with one internal node

and k − 1 leaves

Theorem 4.3. Let n be a positive number and Sn be a star with n vertices. Then

χg(Sn) = 2

Proof. Let n be a positive number and Sn be a star with n vertices. It is obvious

that χg(Sn) ≥ 2. It remains to show that χg(Sn) ≤ 2. Suppose that there are two

available colors. Alice first label the center vertex by color 1. Then all remaining

leaves can be labeled by color 2.
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4.4 The game chromatic number of complete graphs

A complete graph is a simple undirected graph in which every pair of distinct

vertices is connected by a unique edge. The complete graph on n vertices is

denoted by Kn.

Theorem 4.4. Let n be a positive number and Kn be a complete graph with n

vertices Then

χg(Kn) = n

Proof. The proof is quite straightforward because all n vertices are mutually ad-

jacent. Hence, it requires at least n colors to label all vertices of Kn. Obviously,

an n-vertex graph requires at most n colors. That is, the game chromatic number

of Kn is always n.

4.5 The game chromatic number of cycles

A cycle or circular graph is a graph that consists of a single cycle, or in other

words, some number of vertices connected in a closed chain. The cycle graph with

n vertices is called Cn.

Theorem 4.5. Let n ≥ 3 be a positive number and Cn be a cycle with n vertices

Then

χg(Cn) = 3

Proof. By Theorem 4.4, we obtain that χg(C3) = χg(K3) = 3.

Let n ≥ 4. By Remark 4.1, we obtain that χg(Cn) ≤ ∆(C3) + 1 = 3.

Suppose that there is only two available colors. When Alice label the first

vertex by color 1, Bob choose to label a vertex with distance two from v by color

2. Hence, the middle vertex requires the third color. Therefor, Bob wins.

In conclusion, we obtain that χg(Cn) = 3.
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4.6 The game chromatic number of Petersen graph

Theorem 4.6. The game chromatic number of Petersen graph is 4.

Proof. Let G be the Petersen graph as shown in the Figure 4.1

Figure 4.1: the Petersen graph

If there are four available colors, then all vertices can be labeled because of

∆(G) = 3. Hence, Alice wins. Suppose that there are only three available colors.

We will prove that Bob wins.

Without loss of generality, suppose that Alice first labels v1 by color 1. We

divide Alice’s next move into three cases.

Case 1. Alice labels neither v2 or u2. Then Bob labels u2 by color 3. Therefore,

there is no available color for v2. Hence, Bob wins.

Case 2. Alice labels u2. Alice cannot label u2 by color 3; otherwise, there is

no color for v2. Without loss of generality, suppose that Alice labels u2 by color

1. Then Bob label v4 by color 3. On the next move, if Alice labels neither v5 nor

u5, then Bob labels u5 by color 2. Hence, there is no color for v5. If Alice labels

v5 or u5, then Bob labels u1 by color 2. Hence, there is no color for u4. That is,

Bob wins.

Case 3. Alice labels v2. The color on v2 must be color 3. Then Bob labels u4

by color 2. On the next move, if Alice labels neither u1 nor u3, then Bob labels
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u3 by color 3. Hence, there is no color for u1. If Alice labels u1 or u3, then Bob

labels u5 by color 3. Hence, there is no color for u2. That is, Bob wins.

4.7 The game chromatic number of wheel graphs

A wheel graph Wn is a graph with n+1 vertices (n3), obtained from connecting

a single vertex to all vertices of a cycle with n vertices. Some authors instead use

n to refer to the number of vertices of wheel graphs, so that their Wn is the graph

that we denote Wn−1. The chromatic number of Wn is three when n is even and

four when n is odd. However, the game chromatic number of Wn is four unless

n = 4.

Theorem 4.7. Let n ≥ 3 be a positive number and Wn be a wheel graph with

n+ 1 vertices. Then

χg(Wn) =


3 ;n = 4

4 ; otherwise

Proof. Let V (Wn) = {u, v1, v2, . . . , vn} where u is the center of Wn.

Case 1. n = 3. We obtain that χg(W4) = χg(K4) = 4.

Case 2. n = 4. Notice that W4 has K3 as a subgraph. It requires at least three

colors to label all vertices of W4. It remains to show that Alice has a winning

strategy when there are at least three colors.

Alice first labels the center by color 1. Without loss of generality, Bob labels

v1 by color 2. On the next move, Alice labels v3 by color 2. Then remaining

vertices can be labeled by color 3. Therefore, χg(W4) = 3.

Case 3. n ≥ 4. The proof is divided into two parts.

Suppose that there are four available colors. Alice first labels the center by

color 1. Notice that the remaining vertices form a cycle with n vertices. Then
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all remaining vertices can be labeled because ∆(Cn) = 2 but there are three

remaining colors for each remaining vertex. Hence, Alice wins.

Suppose that there are only three available colors.

Case 3.1. The first vertex that Alice labels is not the center. Without loss of

generality, suppose that Alice labels v1 by color 1. Bob labels v3 by color 2.

Notice that both v2 and u are adjacent to v1 and v3. Moreover, v2 and u need

different colors because they are adjacent. That is, v2 and u require the third and

the fourth colors. It is impossible to color all vertices of Wn. Then Bob wins.

Case 3.2. The first vertex, that Alice labels, is the center. Suppose that Alice

labels the center by color 1. Without loss of generality, Bob labels v1 by color 2.

On the next move, Bob choose to label v3 or vn−1 by color 3. Hence, the middle

vertex v2 or vn requires the fourth color. It is impossible to color all vertices of

Wn. Then Bob wins.

Before talking about generalized wheel graphs, we need to mention a graph

operation callled the join of graphs. The join of graphs G and H, written G∨H,

is the graph obtained from G and H by adding the edges between all vertices of

G and all vertices of H. Here, We investigated the game chromatic numner of

G ∨H.

We can say that a wheel graph Wn is obtained from K1∨Cn. Then generalized

wheel graphs is Km ∨ Cn.

Lemma 4.8. If m ≥ 4, then χg(Km ∨ Cn) ≤ 2m− 1.

Proof. Let m ≥ 4. Suppose that there are 2m − 1 colors. At most Alice’s first

m turn, she can make all vertices of Km be labeled. Each vertex of Cn has at

least three available colors. Then the remaining vertices can always be labeled.

Therefore, Alice wins.
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Theorem 4.9. Let m,n be a positive number where n ≥ 3 and Cn be a cycle with

n vertices. Then

χg(Km∨Cn) =



m+ 2 ; if n = 4 and m is odd

m+ 3 ; if n = 3, or n = 4 and m is even, or n ≥ 5 and m ≤ 3

2m− 1 ; if n ≥ 5 and n ≥ 4 and m ≤ ⌈n
2
⌉+ 1

m+ ⌈n
2
⌉ ; if n ≥ 5 and n ≥ 4 and m ≥ ⌈n

2
⌉+ 2

Proof. Let m,n be a positive number where n ≥ 3 and Cn be a cycle with n

vertices. Let V (Km) = {u1, u2, . . . , um} and V (Cn) = {u1, u2, . . . , un}.

Case 1. n = 3. We obtain that χg(Km ∨ C3) = χg(Km+3) = m+ 3.

Case 2. n = 4 and m is odd. Notice that Km ∨ C4 has Km+2 as a subgraph.

It requires at least m + 2 colors to label all vertices of Km ∨ C4. It remains to

show that Alice has a winning strategy when there are at least m+ 2 colors.

Sincem is odd, Alice can force Bob to first label a vertex of C4, say v1 Whenever

Bob first labels v1, Alice labels v3 by using the same color. Moreover, when Bob

first labels a vertex of {v2, v4}, Alice labels the remaining vertices by the same

color. Hence, m+ 2 colors are enough.

Case 3. n = 4 and m is even. It requires to show that Bob wins when there

are m+ 2 colors and Alice wins when there are m+ 3 colors.

Suppose that there are m+2 colors. Because of m is even, Bob can force Alice

to first label a vertex of C4, say v1 Whenever Alice first labels v1, Bob labels v3 by

using a different color. Then v2 needs the third colors. Hence, C4 requires at least

3 colors and Km requires another m colors. Hence, m+ 2 colors are not enough.

That is, Bob wins.

Suppose that there are m+ 3 colors. If Bob first labels a vertex from Cn, say

v1, then Alice labels v3 by the same color. Hence, all vertices of Km ∨ C4 can
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be labeled by m + 3 colors. Otherwise, Bob will try to force Alice to first label

a vertex from Cn by keep labeling only vertices of Kn. Alice also keep labeling

vertices of Km. Then their m first turns are only on vertices of Km. Consequently,

the remaining vertices are C4 and each vertex has three available colors. Hence,

the remaining vertices can always be labeled because of ∆(C4) = 2. That is, Alice

wins.

Case 4. n ≥ 5 and m ≤ 3. On the first turn, if Alice labels a vertex from Cn,

say v1, then Bob labels v3 by a different color. Hence, Cn requires three colors. If

Alice does not label a vertex of Cn, then Bob labels v1. On his next turn he labels

v3 or vn−1 by a different color to confirm that Cn requires three colors. Therefore,

Km ∨ Cn requires m+ 3 colors.

Suppose that there are m + 3 colors. At most Alice’s first m turn, she can

make all vertices of Km be labeled. Each vertex of Cn has at least three available

colors. Then the remaining vertices can always be labeled. Hence, Alice wins.

Case 5. n ≥ 5 and n ≥ 4 and m ≤ ⌈n
2
⌉+ 1.

By Lemma 4.8, it remains to show that Bob wins when there are 2m−2 colors.

Suppose that there are only 2m − 2 colors. On Bob’s first m − 1 turns, he will

label m−1 vertices of Cn by using different m−1 colors. The goal can be achieved

because m− 1 ≤ ⌈n
2
⌉. After reaching the goal, there are only m− 1 color for all

vertices of Km. Hence, Bob wins.

Case 6. if n ≥ 5 and n ≥ 4 and m ≥ ⌈n
2
⌉+ 2

Suppose that there are only m− 1 + ⌈n
2
⌉ colors. On all Bob’s first ⌈n

2
⌉ turns,

he will label ⌈n
2
⌉ vertices of Cn by using ⌈n

2
⌉ different colors. He may finish the

goal before ⌈n
2
⌉ turns if Alice help him label Cn. If he achieves the goal then Cn

uses at least ⌈n
2
⌉ colors. Then Km∨Cn requires at least m+⌈n

2
⌉ colors. If he runs

out of colors, then there exists a vertex of Km which is not yet labeled because
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m ≥ ⌈n
2
⌉+ 2. There is no color for the vertex; hence, Bob wins.

Suppose that there are m + ⌈n
2
⌉. Alice keep labeling vertices of Km until all

vertices of Km are labeled or Bob first labels a vertex of Cn. If All vertices of Km

are labeled, then all vertices of Cn can be labeled because of ⌈n
2
⌉ ≥ 3. If Bob first

labels a vertex of Cn, then Alice keep labeling the remaining vertices of Cn by

using the same colors. Alice goal is that all vertices of Cn be labeled by at most

⌈n
2
⌉ colors. Since she can always reach the goal, there are m remaining colors for

Km. Hence, Alice wins.



CHAPTER V

Conclusions and future work

5.1 Conclusions

In this research repost, we give the exact value of the game chromatic num-

ber of paths, stars, cycles, complete graphs, Petersen graphs, wheel graphs and

generalized wheel graphs.

Theorem 5.1. Let n be a positive number and Pn be a path with n vertices Then

χg(Pn) =



1 ;n = 1

2 ;n = 2, 3

3 ;n ≥ 4

Theorem 5.2. Let n be a positive number and Sn be a star with n vertices. Then

χg(Sn) = 2

Theorem 5.3. Let n be a positive number and Kn be a complete graph with n

vertices Then

χg(Kn) = n

Theorem 5.4. Let n ≥ 3 be a positive number and Cn be a cycle with n vertices

Then

χg(Cn) = 3

Theorem 5.5. The game chromatic number of Petersen graph is 4.
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Theorem 5.6. Let n ≥ 3 be a positive number and Wn be a wheel graph with

n+ 1 vertices. Then

χg(Wn) =


3 ;n = 4

4 ; otherwise

Theorem 5.7. Let m,n be a positive number where n ≥ 3 and Cn be a cycle with

n vertices. Then

χg(Km∨Cn) =



m+ 2 ; if n = 4 and m is odd

m+ 3 ; if n = 3, or n = 4 and m is even, or n ≥ 5 and m ≤ 3

2m− 1 ; if n ≥ 5 and n ≥ 4 and m ≤ ⌈n
2
⌉+ 1

m+ ⌈n
2
⌉ ; if n ≥ 5 and n ≥ 4 and m ≥ ⌈n

2
⌉+ 2

5.2 Future Work

The Game chromatic number of the following classes of graphs are still open

1. Grid graphs

2. Hypercube graphs

3. Complete multipartite graphs

4. Knigh tour graphs

5. Harary graphs

6. Turan graphs

7. Circulant graphs

8. Generalized Petersen graphs
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The Cartesian product G□H is the graph with vertex set V (G)×V (H) where

two vertices (u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and

v1v2 ∈ E(H) or v1 = v2 and u1u2 ∈ E(G). Grid graphs can be written in the

form of Pn□Pn where □. In [1], Bartnicki et. al. also gave the exact values of

χg(P2□Pn). Howover, χg(Pn□Pn) is not yet investigated.

In [1], the authors gave a conjecture that for a hypercube graph Qn, χg(Qn) =

n+ 1. The conjecture is still open, as well.

For the remainnig classes of graphs, there is no one mention about its game

chromatic number.
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Abstract 

In this paper, we investigate exact values of the game chromatic 

numbers of wheel graphs and also of generalized wheel graphs. 

1. Introduction 

Two players, Alice and Bob, alternatively color vertices of a graph using 

a fixed set of colors with Alice starting first so that no two adjacent vertices 

receive the same color. Alice wins if all vertices are successfully colored and 

Bob wins if, at the some time before all vertices are completely colored, one 

of the players has no legal move. The game chromatic number of a graph         

G, denoted by ( ),Ggχ  is the least number of colors such that Alice has a 

winning strategy. 
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The well-known game coloring was invented by Steven J. Bram and was 

published in 1981 by Gardner [5]. Bodlaender [4] reinvented this game in 

1991. Define ( ) { ( ) }.max GG ∈|χ=χ GGgg  The game chromatic numbers 

of several classes of graphs are investigated. For example, ( ) 4=χ Fg  when 

F is the class of forests [7], ( ) 76 ≤χ≤ OPg  when OP  is the class of 

outerplanar graphs [8, 9], ( ) 178 ≤χ≤ Pg  when P  is the class of planar 

graphs [9, 10], ( ) 23 +=χ kg KT  when 2≥k  and KT  is the class of         

k-trees [11, 12]. 

In this paper, the game chromatic numbers of several classes of graphs 

are investigated; for example, paths, complete graphs, stars, cycles, wheel 

graphs and generalized wheel graphs. 

2. Preliminaries 

Throughout the paper, G denotes a simple, undirected, finite, connected 

graph; ( )GV  and ( )GE  are the vertex set and the edge set of G, respectively. 

A path in a graph is a finite or infinite sequence of edges connecting       

a sequence of vertices which, by most definitions, are all distinct from one 

another. A path with n vertices is denoted by .nP  

 

Figure 2.1. Path .5P  

Remark 2.1. Let n be a positive integer and nP  be a path with n vertices. 

Then 

( )
⎪⎩

⎪
⎨
⎧

≥
=
=

=χ
.4;3

3,2;2

1;1

n
n
n

Png  

Proof. Denote the vertices of the fiber of nP  by ....,,, 21 nuuu  
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Case 1. .1=n  Alice chooses any color to label .1u  Then her goal is 

achieved. 

Case 2. .2=n  To label ,2P  it requires at least two colors because 1u  

and 2u  need different colors. Suppose that there are two available colors. 

First, Alice labels 1u  by color 1. By the game rule, Bob must use another 

color to label ;2u  hence, Alice can achieve her goal. 

Case 3. .3=n  To label ,3P  it also requires at least two colors. Suppose 

that there are two available colors. First, Alice labels 2u  by color 1. Without 

loss of generality, Bob has to label 1u  by color 2. Finally, Alice labels 3u  by 

color 2; hence, Alice wins. 

Case 4. .4≥n  If there are three available colors, then all vertices of     

nP  can be labeled because ( ) .32 <=Δ nP  Suppose that there are only two 

available colors. On the first move, if Alice uses color 1 to label a vertex, say 

u, then Bob uses color 2 to label a vertex with distance two from u. Then the 

middle vertex requires the third color. Hence, Bob wins. 
 

A complete graph is a simple graph in which all vertices are connected. 

The complete graph with n vertices is denoted by .nK  

Remark 2.2. Let n be a positive integer and nK  be a complete graph 

with n vertices. Then 

( ) .nKng =χ  

Proof. The proof is quite straightforward because all vertices are 

mutually adjacent. Hence, it requires at least n colors to label all vertices         

of .nK  Obviously, an n-vertex graph requires at most n colors. That is, the 

game chromatic number of nK  is always n. 
 



Siriwan Wasukree 1044 

 

Figure 2.2. Complete graphs. 

A star kS  is the complete bipartite graph ;1,1 −kK  a tree with one 

internal node and 1−k  leaves (but, no internal nodes and k leaves when 

.)2≤k  Alternatively, some authors define kS  to be the tree of order 1+k  

with maximum diameter 2; in which case a star of 3>k  has 1−k  leaves. 

                              

Figure 2.3. Stars 8S  and .10S  

Remark 2.3. Let n be a positive integer where 2≥n  and nS  be a star 

with n vertices. Then 

( ) .2=χ ng S  
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Proof. Let n be a positive integer where 2≥n  and nS  be a star with n 

vertices. It is obvious that ( ) .2≥χ ng S  It remains to show that ( ) .2≤χ ng S  

Suppose that there are two available colors. Alice first labels the center 

vertex by color 1. Then all remaining leaves can be labeled by color 2. 
 

A cycle is a graph that consists of a single cycle, or in other words, some 

number of vertices connected in a closed chain. The cycle graph with n 

vertices is called .nC  The number of vertices in nC  equals the number of 

edges, and every vertex has degree 2; that is, every vertex has exactly two 

edges incident with it. 

 

Figure 2.4. Cycles. 

Remark 2.4. Let 3≥n  be a positive integer and nC  be a cycle with n 

vertices. Then 

( ) .3=χ ng C  

Proof. By Remark 2.2, we obtain that ( ) ( ) .3=χ=χ ngng KC  

Let .4≥n  Because of ( ) ,2=Δ nC  all vertices of nC  can always be 

labeled if there are three available colors. That is, Alice always wins if there 

are three available colors. 
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Suppose that there are only two available colors. On the first move, if 

Alice uses color 1 to label a vertex, say u, then Bob uses color 2 to label a 

vertex with distance two from u. Then the middle vertex requires the third 

color. Hence, Bob wins. 

In conclusion, we obtain that ( ) .3=χ ng C  
 

3. Wheel Graphs and Generalized Wheel Graphs 

A wheel graph nW  is a graph with 1+n  vertices where ,3≥n  obtained 

from connecting a single vertex to all vertices of a cycle with n vertices. 

Theorem 3.1. Let 3≥n  be a positive integer and nW  be a wheel graph 

with 1+n  vertices. Then 

( )
⎩
⎨
⎧ =

=χ
.;4

4;3

otherwise
n

Wng  

Proof. Let ( ) { },...,,,, 21 nn vvvuWV =  where u is the center of .nW  

Case 1. .3=n  By Remark 2.2, we obtain that ( ) ( ) .444 =χ=χ KW gg  

Case 2. .4=n  Notice that 4W  has 3K  as a subgraph. It requires at least 

three colors to label all vertices of .4W  It remains to show that Alice has a 

winning strategy when there are at least three colors. 

Alice first labels the center by color 1. Without loss of generality, Bob 

labels 1v  by color 2. On the next move, Alice labels 3v  by color 2. Then 

remaining vertices can be labeled by color 3. Therefore, ( ) .34 =χ Wg  

Case 3. .4≥n  The proof is divided into two parts. The first part is that 

Alice wins when there are four colors. The other part is that Bob wins when 

there are three colors. 

Suppose that there are four available colors. Alice first labels the center 

by color 1. Notice that the remaining vertices form a cycle with n vertices. 
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Then all remaining vertices can be labeled because ( ) ,2=Δ nC  but there are 

three remaining colors for each remaining vertex. Hence, Alice wins. 

Suppose that there are only three available colors. On the first move, 

Alice has two choices. She labels either a non-center vertex or a center 

vertex. 

Case 3.1. Alice labels a non-center vertex on the first move. Without loss 

of generality, suppose that Alice labels 1v  by color 1. Then Bob labels 3v   

by color 2. Notice that both 2v  and u are adjacent to 1v  and .3v  Moreover, 

2v and u need different colors because they are adjacent. That is, 2v  and u 

require the third and the fourth colors. It is impossible to color all vertices of 

.nW  Then Bob wins. 

Case 3.2. Alice labels a center vertex on the first move. Suppose that 

Alice labels the center by color 1. Then Bob labels 1v  by color 2. On the next 

move, Bob chooses to label 3v  or 1−nv  by color 3. Hence, the middle vertex 

2v  or nv  requires the fourth color. It is impossible to color all vertices of 

.nW  Then Bob wins. 
 

Before talking about generalized wheel graphs, we need to mention a 

graph operation called the join of graphs. The join of graphs G and H, 

written ,HG ∨  is the graph obtained from G and H by adding the edges 

between all vertices of G and all vertices of H. 

Hence, a wheel graph nW  is isomorphic to .1 nCK ∨  A generalized 

wheel graph, denoted by nm CK ∨  is obtained from connecting all vertices 

of a complete graph mK  to all vertices of a cycle .nC  

Lemma 3.2. If ,4≥m  then ( ) .12 −≤∨χ mCK nmg  

Proof. Let .4≥m  It suffices to show that Alice wins when there are 

12 −m  colors. Suppose that there are 12 −m  colors. On Alice first turn, she 

labels a vertex from mK  by color 1. Then she keeps labeling only vertices 
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from mK  by new colors. During at most Alice’s first m turns, Alice can 

reach her goal because there are 12 −m  colors. That is, all vertices of mK  

can be labeled by m colors; hence, there are 1−m  colors for all vertices         

of .nC  Because of ( ) ,131 +Δ≥≥− nCm  all vertices of nC  can always be 

labeled. Therefore, Alice wins. 
 

Theorem 3.3. Let m, n be positive integers where 3≥n  and nC  be a 

cycle with n vertices. Then 

( )nmg CK ∨χ  

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+⎥⎥
⎤

⎢⎢
⎡≥≥≥⎥⎥

⎤
⎢⎢
⎡+

+⎥⎥
⎤

⎢⎢
⎡≤≥≥−

≤≥==+

=+

=

.2
2

45;
2

,1
2

45;12

,3543;3

,4;2

nmandmandnifnm

nmandmandnifm

mandnorevenismandnornifm

oddismandnifm

 

Proof. Let m, n be positive integers where 3≥n  and nC  be a cycle with 

n vertices. Let ( ) { }mm uuuKV ...,,, 21=  and ( ) { }....,,, 21 nn vvvCV =  

Case 1. .3=n  We obtain that ( ) ( ) .333 +=χ=∨χ + mKVK mgmg  

Case 2. 4=n  and m is odd. Notice that 4CKm ∨  has 2+mK  as a 

subgraph. It requires at least 2+m  colors to label all vertices of .4CKm ∨  

It remains to show that Alice has a winning strategy when there are 2+m  

colors. 

Since m is odd, Alice can force Bob to first label a vertex of ,4C  say .1v  

Whenever Bob first labels ,1v  Alice labels 3v  by using the same color. 

Moreover, when Bob first labels a vertex from { },, 42 vv  Alice labels the 

remaining vertex by the same color. Hence, 2+m  colors are enough. 

Case 3. 4=n  and m is even. It requires to show that Bob wins when 

there are 2+m  colors and Alice wins when there are 3+m  colors. 
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Suppose that there are 2+m  colors. Since m is even, Bob can force 

Alice to first label a vertex of ,4C  say .1v  Whenever Alice first labels ,1v  

Bob labels 3v  by using a different color. Then 2v  needs the third colors. 

Hence, 4C  requires at least three colors and mK  requires another m color. 

Hence, 2+m  colors are not enough. That is, Bob wins. 

Suppose that there are 3+m  colors. If Bob first labels a vertex from 

,4C  say ,1v  then Alice labels 3v  by the same color. Hence, all vertices of 

4CKm ∨  can be labeled by 3+m  colors. Otherwise, Bob will try to force 

Alice to first label a vertex from 4C  by keep labeling only vertices of .nK  

Alice also keeps labeling vertices of .mK  Then their m first turns are only  

on vertices of .mK  Consequently, the remaining vertices are 4C  and each 

vertex has three available colors. Hence, the remaining vertices can always 

be labeled because of ( ) .24 =Δ C  That is, Alice wins. 

Case 4. 5≥n  and .3≤m  On the first turn, if Alice labels a vertex from 

,nC  say ,1v  then Bob labels 3v  by a different color. Hence, nC  requires 

three colors. If Alice does not label a vertex of ,nC  then Bob labels .1v  On 

his next turn, he labels 3v  or 1−nv  by a different color to confirm that nC  

requires three colors. Therefore, nm CK ∨  requires 3+m  colors. 

It remains to show that Alice wins when there are 3+m  colors. Suppose 

that there are 3+m  colors. On the first turn, Alice labels a vertex from mK  

by any color. Whatever Bob does, Alice keeps labeling a vertex of mK  by a 

new color until all vertices of mK  are labeled. If Bob tries to interfere in 

Alice’s goal, then Bob will use colors as much as he can to label vertices of 

.nC  Since there are 3+m  colors but ,3≤m  she can make all vertices of 

mK  be labeled by m colors. Hence, each vertex of nC  has three available 

colors. Then the remaining vertices can always be labeled. Therefore, Alice 

wins. 
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Case 5. 5≥n  and 4≥m  and .1
2

+⎥⎥
⎤

⎢⎢
⎡≤ nm  By Lemma 3.2, it remains 

to show that Bob wins when there are 22 −m  colors. Suppose that there are 

only 22 −m  colors. Bob tries to label 1−m  vertices of nC  by 1−m  colors 

in order to remain only 1−m  colors for .mK  Notice that Alice cannot label 

all vertices of mK  before Bob reaches his goal. To interfere in Bob’s goal, 

Alice must label a vertex of nK  on her first move and labels vertices of nC  

by using already used colors on the remaining moves. Because ,
2

1 ⎥⎥
⎤

⎢⎢
⎡≤− nm  

Bob can achieve his goal. Hence, Bob wins. 

Case 6. 5≥n  and 4≥m  and .2
2

+⎥⎥
⎤

⎢⎢
⎡≥ nm  The proof is divided into 

two parts. The first part is that Bob wins where there are ⎥⎥
⎤

⎢⎢
⎡+−

2
1

nm  colors. 

The other part is that Alice wins where there are ⎥⎥
⎤

⎢⎢
⎡+

2
nm  colors. 

Suppose that there are only ⎥⎥
⎤

⎢⎢
⎡+−

2
1

nm  colors. On all Bob’s first ⎥⎥
⎤

⎢⎢
⎡

2
n

 

turns, he will label ⎥⎥
⎤

⎢⎢
⎡

2
n

 vertices of nC  by using ⎥⎥
⎤

⎢⎢
⎡

2
n

 different colors. He 

may finish the goal before ⎥⎥
⎤

⎢⎢
⎡

2
n

 turns if Alice helps him label .nC  If he 

achieves the goal, then nC  uses at least ⎥⎥
⎤

⎢⎢
⎡

2
n

 colors. Then nm CK ∨  requires 

at least ⎥⎥
⎤

⎢⎢
⎡+

2
nm  colors. If he runs out of colors, then there exists a vertex of 

mK  which is not yet labeled because .2
2

+⎥⎥
⎤

⎢⎢
⎡≥ nm  There is no color for the 

vertex; hence, Bob wins. 
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Suppose that there are ⎥⎥
⎤

⎢⎢
⎡+

2
nm  colors. Alice keeps labeling vertices of 

mK  until all vertices of mK  are labeled or Bob first labels a vertex of .nC  If 

all vertices of mK  are labeled, then all vertices of nC  can be labeled because 

of .3
2

≥⎥⎥
⎤

⎢⎢
⎡n

 If Bob first labels a vertex of ,nC  then Alice starts labeling 

vertices of .nC  Alice’s goal is that all vertices of nC  be labeled by at most 

⎥⎥
⎤

⎢⎢
⎡

2
n

 colors. Since she can always reach the goal, there are m remaining 

colors for .mK  Hence, Alice wins. 
 

4. Future Work 

In 2008, Bartnicki et al. [6] investigated the game chromatic number         

of the Cartesian product of two graphs. The Cartesian product HG �  is         

the graph with vertex set ( ) ( )HVGV × , where two vertices ( )11, vu  and 

( )22, vu  are adjacent if and only if either 21 uu =  and ( )HEvv ∈21  or 

21 vv =  and ( ).21 GEuv ∈  In [6], the authors proved that ( )HGg �χ  is not 

bounded above in terms of ( )Ggχ  and ( ).Hgχ  However, Zhu [1] found          

the upper bound of ( )HGg �χ  in terms of the game chromatic number of            

G and acyclic chromatic number of H. In [6], Bartnicki et al. also gave           

the exact values of ( ),2 ng PP �χ  ( )ng CP �χ 2  and ( ).2 ng KP �χ  Later,      

Sia [2] found the exact value of ( ),nmg PS �χ  ( ),mmg CS �χ  ( )ng WP �χ 2       

and ( ).,2 nmg KP �χ  In [3], the author proved that ( ) 5≤�χ nmg CC  and 

( ) 52 =�χ nmg CC  for 3≥m  and .7≥n  

Recall that every generalized wheel graph can be obtained from the join 

of a cycle and a complete graph. The game chromatic numbers of some join 

graphs are not yet investigated. The following statements may become the 

next research paper: 
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(1) The game chromatic number of ,nm CC ∨  where mC  and nC  are 

cycles. 

(2) The game chromatic number of ,nm PP ∨  where mP  and nP  are 

paths. 

(3) The game chromatic number of ,nm PK ∨  where mK  is a complete 

graph and nP  is a path. 

Here, we will investigate the game chromatic number of some join 

graphs. It is interesting that ( ) 744 =∨χ CCg  while ( ) .554 =∨χ CCg  

Remark 4.1. The game chromatic number of 44 CC ∨  is seven. 

Proof. Notice that all vertices of the first 4C  can be labeled by at most 

four colors. There are at least three colors for the other cycle. Since the 

maximum degree of cycles is two, all vertices of cycles can be labeled by 

three colors. Hence, ( ) .744 ≤∨χ CCg  

Suppose that there are six available colors. Let ,1u  ,2u  ,3u  4u  and ,1v  

,2v  ,3v  4v  be two closed chains of .4C  Without loss of generality, Alice 

labels 1u  by color 1. Then Bob labels 3u  by color 2. On the next move, Alice 

has two choices. 

Case 1. Alice labels 1v  by color 3. Then Bob labels 3v  by color 4. On 

the next move, without loss of generality, suppose that Alice labels 2u  by 

color 5. Then Bob labels 4u  by color 6. Hence, there is no available color for 

2v  and .4v  

Case 2. Alice labels 2u  by color 3. Then Bob labels 4u  by color 4. On 

the next move, without loss of generality, suppose that Alice labels 1v  by 

color 5. Then Bob labels 2v  by color 6. Hence, there is no available color for 

2v  and .4v  

Therefore, Bob wins. 
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Remark 4.2. The game chromatic number of 54 CC ∨  is five. 

Proof. It is easy to see that 54 CC ∨  requires at least five colors because 

4C  requires two colors and 5C  requires three colors. Suppose that there are 

five available colors. Let ,1u  ,2u  ,3u  4u  and ,1v  ,2v  ,3v  ,4v  5v  be closed 

chains of 4C  and .5C  

Notice that Alice can force Bob to first label a vertex from ,1u  ,2u  ,3u  

.4u  Whenever Bob labels ,1u  Alice labels 3u  by the same color and 

whenever Bob labels ,2u  Alice labels 4u  by the same color. 

Hence, we focus on .5C  Alice labels 1v  by color 1. When Bob labels a 

vertex from { }42, vv  or { },, 53 vv  Alice labels the other vertex by a new 

color. If Bob uses color 1, then Alice uses a new color; otherwise, Alice uses 

the same color. Hence, Alice wins. 
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