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What is the minimum number of colors required to color a map such that

no two adjacent regions having the same color? Three colors are not enocugh

to because a map with four reqgions with each region contacting the three other

regions. However, no map have ever been found that four colors are not enough.

This question first posed in the early 1830s and not solved until 1976 by Kenneth

Appel and Wolfgang Haken. The four color theorem states that every map can

be colored by using at most four colors.

For a map, we can transform it into a graph, called a planar graph in order

to make it easier to studied and proved. According to the four color theorem, a

planar graph is 4-colorable. In other words, a graph with neither K -minor nor

K3 s-minor is 4-colorble



ii

Hadwiger’s conjecture is a generalization of the four color theorem. Hadwiger’s
conjecture states that a graph with no K -minor is t-colorable.

In this research report, we first study the four color theorem and all results
related to Hadwiger’s conjecture. Then we prove that an inflation of n-graphs

with n < 7 satisfying the Hadwiger’s conjecture.
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CHAPTER I

INTRODUCTION

1.1 Background of the study

What is the minimum number of colors required to color a map such that no
two adjacent regions having the same color? Three colors are not enough because
a map with four reqions with each region contacting the three other regions require
at least four colors. However, no map have ever been found that four colors are
not enough. This question first posed in the early 1850s and not solved until 1976
by Kenneth Appel and Wolfgang Haken. The four color theorem states that every
map can be colored by using at most four colors.

For a map, we can transform it into a graph, called a planar graph in order to
make it easier to be studied and proved. According to the four color theorem, a
planar graph is 4-colorable.

In 1937, Wagner [39] found a characterization of a planar graph, which states
that a graph is planar if and only if it does not contain Kj or K33 as a minor.
Hence, we can conclude that a graph which does not contain K5 or K 3 as a minor
is 4-colorble.

Hadwiger’s conjecture is a generalization of the four color theorem. Hadwiger’s
conjecture states that a graph with no K, -minor is ¢-colorable.

For case ¢t < 3, it was proved by Hadwiger [16] when he proposed the conjec-
ture. In 1937, Wagner [39] proved that the four color problems implies Hadwiger’s

conjecture when ¢ = 4. After the four color problem was proved in 1976, we can



conclude that the case t = 4 is true. Robertson, Seymour and Thomas [35] proved
Hadwiger’s conjecture for ¢ = 5. Hadwiger’s conjecture is open for ¢ > 6.

There are interesting results related to Hadwiger’s conjecture when ¢ > 6.
Kawarabayashi and Toft [20] proved that every graph contain neither Ky nor Ky 4
as a minor is 6-colorable. Jakobsen [17], [18] proved that every graph with no
K7 -minor is 6-colorable and every graph with no K7 -minor is 7-colorable Albar
and Gongalves proved that every graph with no K7-minor is 8-colorable and every
graph with no Kg-minor is 10-colorable. Rolek and Song [33] proved that every
graph with no K, ;-minor is (2¢ — 6)-colorable for ¢t = 7,8,9. They also proved
every graph with no Kg-minor is 9-colorable and every graph with no K -minor
is 8-colorable.

Since Hadwiger’s conjecture is very dificult in general cases, it make sense to
study for a special class of graphs. The conjecture was proved for line graphs by
Reed and Seymour [31], power of cycles and their complement by Li and Liu [23],
circular arc graphs by Belkale and Shandran [4].

Since a stronger conjecture, known as Hajés conjecture is false for all £ > 6 by
surprisingly simple counterexample; an infation of 5-cycle. The counterexample
is not a counterexample for Hadwiger’s conjecture but an inflation of some other
small graph might yield a counterexample to Hadwiger’s conjecture. Hence, it
make sense to study Hadwiger's conjecture for an inflation of small graphs. Ped-
ersen [29] proved that there is no counterexample to Hadwiger’s conjecture can
be obtained from inflating the Petersen graph. Thomassen {37] proved that a
graph G is perfect if and only if every inflation of G satisfied Hajés conjecture.
That is, Hajos conjecture is true for every inflation of a perfect graph. Therefore,
Hadwiger’s conjecture is also true for every inflation of a perfect graph. Plummer,

Stiebitz and Toft stated that there is no counterexample to Hadwiger’s conjecture



can be obtained from inflating a graph with independence number at most 2 and
order at most 11. Casselgren and Pedersen [8] prove that no counterexample to
Hadwiger’s conjecture can be obtained by inflating a 3-colorable graph. We can
conclude that for a graph G with at most 11 vertices, If G is perfect or a{G) < 2
or x(G) € 3, then G satisfies Hadwiger’s conjecture.

In this research report, we prove that an inflation of n-graphs with n < 7 and

minimum degree 3 satisfying the Hadwiger’s conjecture.
1.2 Research Methodology
Assumption
Hadwiger’s conjecture is true for every graph.
Objective

Prove Hadwiger’s conjecture for a new special classes of graphs. We prove
that an inflation of n-graphs with » < 7 and minimum degree 3 satisfying the

Hadwiger’s conjecture.
Methodology

1. Study all knowledge related to graph coloring in order to apply to prove a

case of Hadwiger’s conjecture.
2. Study all research article related to Hadwiger’s conjecture.
3. Try to select a graph that might vield a counterexample.

4. If we find a counterexample, then this research article is finished and we can

publish an article.



5. If we cannot find any counterexample, we will prove a new class of graphs

that satisfies Hadwiger’s conjecture.
Results

Find a counterexample to Hadwiger's conejecture or prove a new class of

graphs satisfying the Hadwiger’s conjecture.
Discussion

There is small possibility to find a counterexample to Hadwiger’s conjecture.
Hence, this research article wii focus on find a new class of graphs satisfying the

Hadwiger’s conjecture.
Suggestion

Since a stronger conjecture, known as Hajés conjecture is false for all & > 6 by
surprisingly simple counterexample; an infation of 5-cycle. The counterexample
is not a counterexample for Hadwiger’s conjecture but an inflation of some other
small graph might yield a counterexample to Hadwiger’s conjecture. Hence, it

make sense to study Hadwiger’s conjecture for an inflation of small graphs.
Overall
1. Cgapter 1 : Background and history of this research article
2. Chapter 2 : Definition and Basic perties of graphs and colorings
3. Chapter 3 : All results related to the four colour problem
4. Chapter 4 : All reseach article conclusions of Hadwiger’s conjecture

5. Chapter 5 : We prove that an inflation of n-vertex graph with n < 7 and

minimum degree 3 satisfies Hadwiger’s conjecture.



CHAPTER II

PRELIMINARY

2.1 Definitions and notations
Graphs

A graph G is a pair of set (V| E) where V is a finite non-empty set of elements
called vertices and E is a finite set of elements called edges, each of which has two
associated vertices. The set V and E are called the vertex set and the edge set of
G, and denoted by V(G) and E(G). The number of vertices of G is called order
of G and is usually denoted by n and the number of edges of GG is denoted by m.
A graph with only one vertex is called trivial.

An edge whose end points are the same vertex is a loop and if two or more
edges are incident to the same two vertices, then they are called multiple edges.
Unless we say otherwise, assume that all graphs have neither loops nor multiple
edges.

The complement G of a graph G has the same vertices as G, but two vertices

are adjacent in G if and only if the two vertices are not adjacent in G.
Adjacency and degrees

The vertices of an edge are its endpoints and the edge is said to join these
vertices. If vertices v and w are endpoints of an edge e, then the edge e = vw is
tncident to v and w. Two vertices that are joined by an edge are called neighbours

and are said to be adjacent. If v and w are adjacent, we sometimes write v ++ w,



and if v and w are not adjacent we write v ¢% w. Two edges are incident if they
share a same endpoint.

The set N{v} of neighbours of a vertex v is called its neighbourhood. If X C
V (G}, then N(X) denotes the set of vertices that are adjacent to some vertices of
X.

The degree of a vertex v, is denoted by deg(v) or d(v) is the number of its
neighbours. In a non-simple graph, a loop is counted twice. A vertex of degree 0
is an #solated vertex and a vertex of degree 1 is a leaf. A graph is regular if all of
its vertices have the same degree, and is k-regular if that degree is k. A 3-regular
graph is sometimes called cubic. The maximum degree of a graph G is denoted
by A(G) and the minimum degree of a graph G is denoted by 6(G).

An isomorphism between two graphs G and H is a bijection between their
vertex set that preserves both adjacency and non-adjacency. The graph G and H

are isomorphic, denoted by G = H, if there exists an isomorphism between them.
Independent sets and cliques

A set of vertices of a graph G is an independent set or stable set if no two
vertices are adjacent. The independence number of stability number, denoted by
a(G) is the size of the largest such set.

A set of vertics is a cligue if all pairs of vertices are adjacent. The clique

number, denoted by w{G)} is the size of a largest. clique.
Walks, paths and cycles

A walk in a graph is a sequence of a vertices and edges, vg, e1,v1, €0, .. ., €k, Uk,
in which the edges e; joins the vertices »;—; and v;. It is always shortened to
Vg1, V2, . ., V. This walk is siad to go from vy fo v, or to connect v to vx. and

is called a vy, vg-walk. The vertices vy and vy are its endpoints; the other vertices



are internal vertices. The length of a walk is its number of edges. A walk is closed
if the first and the last vertices are the same. Some specific types of walk are the

following:

 a path is a walk in which no vertex is repeated

* a cycle is a non-trivial closed walk in which no vertex is repeated except the

first and the last

a trail is a walk in which no edge is repeated

a circust is a non-trivial closed walk.

L ]

Connectednes and distance

A graph is connected if it has a path connecting each pair of vertices, and
disconnected if there exsit two vertices such that no path connects them. A com-
ponent of a graph is a maximal connected subgraph.

In a connected graph, the distance from v to w, denoted by d(v,w), is the
length of a shortest v, w-path. The diameter of a connected graph ¢ is the greatest
distance between any pair of vertices in G. If G has a cycle, the girth of G is the
length of a shortest cycle.

A connected graph is Fulerian if it has a closed trail containing all of its edges;
such a trail is an Eulerian trodl. A connected graph G is Eulerian if and only if
every vertex of GG has even degree.

A graph with n vertices is Hamiltontan if it has a cycle of length =, and is

pancycle if it has a cycle of every length from 3 to n.



Bipartite graphs and trees

If the set of vertices of a graph G can be partitioned into two non-empty
subsets so that no edge joins two vertices in the same subset, then G is bipartite.
The two subsets are called partite sets. A graph is bipartite if and only if it has
no odd cycle.

A graph without cycles is a forest and a connected graph without cycles is a

tree. The following statements are characterizaions of a tree with n vertices:

+ ( is connected and has no cycle

G is connected and has n — 1 edges

e G has no cycle and has n — 1 edges

G has exactly one path between any two vertices

Special graphs

We introduce some classes of graphs here:

» a complete graph with n vertices, denoted by K, is a graph whose vertices

are pairwise adjacent
» a cyele with n vertices, denoted by C, is a cycle of length n.
* a path with n vertices, denoted by P, is a path of length n — 1.

* a complete bipartite graph with partite sets of size r and s, denoted by K, is
a bipartite set with partite set of size r and s, and two vertices are adjacent

if and only if they are in different partite sets.



Operations on graphs

Let G and H be graphs with disjoin vertex sets V(G) = {v1,vs,...,v,} and
V(H) = {wr,ws, ..., ws}

'The union graph* GUH has vertex set V{(GYUV (H) and edge set E(G)UE(H).
The unoin of k graphs isomorphic to G is denoted by kG.

The join graph* G 4 H is obtained from (G U H by adding an edge from each
vertex in GG ot each vertex in A,

The cartesian product Gx H or GUH has vertex set V(G) x V{H) with (v;, w;)
is adjacent to (vn,wy) if either v; is adjacent to vy, and w; = wy, or v; = v, and

w; is adjacent to wy.
Subgraphs and minors

If G and H are graphs with V(H) C V(G) and E(H) C E(G), then H is a
subgraph of G, and is a spaning subgraph if V(H) = V(G). The subgraph induced
by § C V(G) of a graph G is the subgraph H whose vertex set is S and whose
edge set consists of those edges of G that join two vertices in S.

'The deletion of a vertex v from a graph G, denoted by G — v, is the subgraph
obtained by removing v and all of its incident edges. More generally, if the delete-
tion of a vertex set S of a graph G, denoted by G — § ,is the subgraph obtained
by removing all vertices in S. Similarly, the deletion of an edge e from a graph
G, denoted by G — e, is the subgraph obtained by removing the edge e from G
and the deletion of an edge set X of a graph G, denoted by G — X, is the graph
obtained from G by removing all edges in X.

If the edge e join vertices v and w, then the subdivision of e replaces e by a new
vertex u and two new edges vu and uw. Two graphs are homomorphic if there

is some graph from which each can be obtained by a sequence of subdivisions.
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The contraction of e replaces its vertices v and w by a new vvertex u with an
edge uz if © or w uis adjacent to x in G. A minor of G is any graph that can be
obtained from G by a sequence of edge-deletion and contraction. Note that if G

has a subgraph homonorephic to H, then H is a subgraph of G.

Connectivity

A vertex v in a graph G is a cut-verter if G — v has more conponent than G.
For a connected graph, this is eqivalent to saying that G — v is disconnected. A
non-trivial graph is non-separable if it is connected and has no cut-vertex. There

following statements are characterizaions of non-separable graphs:
» every two vertices of (& share a cycle

+ every two edges of G share a cycle

for any three vertices u,v and w in G, there is a v, w-path that contains w.

[ ]

for any three vertices u,v and w in G, there is a v, w-path that does not

contain .

A block in a graph is a maximal non-separable subgraph. Each edge of a
graph lies in exactly one block, while each vertex that is not an isolated vertex
lies in at least one block, those that are in more than one block being cut-vertices.
The basic idea of non-separable graphs has a natural generalization. A graph G
is k-connected if the removal of fever than k-vertices always leaves a non-trivial
connected graph. The following theorem can be called the Fundamental theorem
of connectivity, Manger's theorem, which is first published in 1927. Paths joining
the same pair of vertices are called internally disjoint if they have no other vertices

in common.
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Manger’s therem (vertex version) A graph is k-connected if and only if every
pair of vertices are joined by & internally disjoint paths

‘The connectivity k(G) of a graph G is the maximum non-negative integer & for
which G is k-connected; for example, the connectivity of the compiete graph K,
is n —1, and a graph has connectivity 0 if and only if it is trivial or disconnected.

An edge € is a cut-edge or bridge of a graph G if G — e has more components
than G. Note that the removal of edge cannot increase the number of components
by more than one. An edge e is a cut edge if there exist vertices v and w for which
e is on every v, w-path.

A graph G is I-edge-connected if the removal of fewer than I edges always leaves
a connected graph. The following is another version of Manger’s theorem.
Manger’s therem (edge version) A graph is I-edge-connected if and only if every
pair of vertices are joined by ! edge disjoint paths.

The edge-connectivity A(G) of a graph G is the greatest non-negative integer
! for which G is l-edge-connected. It is easy to see that A{G) cannot exceed the

minimum degree of G and it is at least as large as the connectivity. That is

#(G) < MG) <4(G)

2.2 Colorings of graphs
Vertex colorings

A coloring of a graph (7 is an assignment of a color to each vertex of 3 so that
adjacent vertices always have different colors, and G is said to be k-colorable if it
has a coloring with k-colors. The chromatic number x{(G) is the smallest value of
k for which H has a k-coloring.

A graph is 2-colorable if and only if it does not contain any odd cycle. However,
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there is no characterization of a k-colorable graph when k > 3. The following

theorems are interesting useful statments.

Theorem 2.1 (Brookl1941). If G is a connected graph other than a complete graph
or an odd cycle, then x(G} < A(G).

Theorem 2.2. If G is a graph with n vertices and independence number a, then
n
> <x(G)<n—a+1l
Edge colorings

An edge coloring of a graph G is an assignment of a color to each vertex of
G so that incident edges always have different colors, and G is said to be k-edge
colorable if it has an edge coloring with k-colors. The edge chromatic number
X'(G) is the smallest value of & for which H has a k-edge coloring. Obviously,
X (C) = AG).

Theorem 2.3. If G is a bipartite graph, then }/'(G) = A{G).
Theorem 2.4. For every graph G, the edge chromatic number '(G) < A(G) +1.

total colorings

A total coloring of a graph G is an assignment of a color to each vertex and
each edge of GG so that incident elements always have different colors, and G
is said to be k-total-colorable if it has a total coloring with k-colors. The lotal
chromatic number x”(G) is the smallest value of k for which H has a k-total
coloring. Obviously, x*(G) > A(G) + 1.

Conjecture 1 (Total coloring conjecture). For every graph G, the edge chromatic
number X'(Q) < A(G) + 2.
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List colorings

If v is a vertex in a graph G, then a color list for v is a set L(v) of colors that
are permitted at v. If each vertex of G has a color listm then an L-coloring of
G is a coloring in which the color of each vertex comes from its lists. A graph is
k-choosable if a graph G has an L-coloring for every list L with |L(v)| = k for
all vertices v. The list chromatic numboer or choice number, denoted by x;(G),
is the minimum number k for which G is k-list colorable. It is easy to check that

x(G) £ x(G) and x(G) < A(G) + 1.



CHAPTER III
FOUR COLOR PROBLEM

3.1 History

How many differnet colors are sufficient to color the countries on a map in

such a way that no two adjacent countries have the same color?

Figure 3.1: A 4-coloring of africa

Figure 3.1 shows a typical arrangement of four color map. Notice that two
regions which share a single point are not consided to be adjacent. That is, both
regions may have the same colors.

After coloring a wide variety of planar graph, one find that every planar graph
can be colored by using four distinct colors. To become a graph, all regions are
replaced by vertices and two vertices are connected by an edge if both regions are
adjacent. The graph, obtained from a map, is called a planar graph. The four
coloring conjecture states that a planar graph is 4-colorable.

As far as is know, this conjecure was first proposed on October 23, 1852 by
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a young man Francis Guthrie. He discovered the statement while trying to color
countries of England. At the time, Guthrie's brother, Frederick, was a student
of Augustus De Morgan at University college of London. Francis inquired with
Frederick, who then took it to De Morgan.

A student of mine [Guthrie] asked me today to give him a reason for a fact
which I did not know was a fact—and do not yet. He says that if a figure be
any how divided and the compartments differently colored so that figures with
any portion of common boundary line are differently colored—four colors may be
wanted but not more.

De Morgan too was unable to prove the conjecture. When he recognize the
difficulty of the problem, he wrote to Sir William Roman Hamilton to ask for
help. Hamilton immediately wrote back that he did not believe he would solve
the conjecture any time soon.

The conjecture was first publshed on June 10, 1854 in British magazin, The
Athenaeum. by F.G., perhaps one of the two Guthries and De Morgan posed the
problem again in the same magazine in 1860. The first formal print is made by
Cayley in 1879 which gave credit back to De Morgan.

In the same yeat, the first proof was given by Alfred Kempe; its incorrectness
was pointed out by Percy Heawood, 11 years later. Another failed proof by Peter
Guthrie Tait in 1880; its gap was shown by Julius Petersen in 1991. In addition to
show a gap in Kempe's proof, Heawood prove five color theorem and generalized
the four color conjecture to surfaces of arbitrary genus. Both failed proofs did
have some value. Kempe discovered what became known as Kempe chains and
Tait found an equivalent formulation of the Four Color Theorem in terms of 3-
edge-coloring. Tait also showed that the four color theorem is equivalent to the

statement that snark must be non-planar.
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The next major contribution was from Birkhoff whose work allowed Franklin
in 1922 to prove that the four color conjecture is true for maps with at most 25
regions.

The main contribution came from A German mathematician, Heinrich Heesch,
who developed two main concepts for the final proof; reducibility and discharging.
He also expanded the concepts with Ken Durre, developed a computer test for
it. Unfortunately, he was unable to procure the necessary supercomputer time to
continue his work.

Finally, after the problem is open for a hundred years before it was proved in
1976 by Kenneth Appel and Wolfgang Haken [2], [3]. Initially, their proof was not
accepted by all mathematician because it was proved hy using computer and it

cannot proved all cases by hand.
Theorem 3.1 (Four color theorem). Fvery planar graph is 4-colorable.

In 1943, Hugo Hadwiger introduced a generalization of the four color theorem

which is still unsolved. [16].

Conjecture 2 (Hadwiger's conjecture). For every integer ¢ > 0, every graph with

no K,y-minor is t-colorable.

3.2 Kempe’s approch

Kempe published his proof of the four color theorem in 1879 and it was ac-
cepted as a valid proof for a decade before a mistake was found. However, his
proof contains several clever ideas. His ideas are also used in the complete proof of
the four color problem. He proved four color problem by induction on the number
of countries. On the induction step, a theorem obtained from Euler’s formula can

confirm that a country with adjecent to at most five countries can be found in
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every map. By Basic step, the map without this country is four color map. If the
country is adjacent to at most three countries, there is always a remaining color
for this country. If the country is adjacent to four or five countries, Kempe try to
prove that a map from Basic step can re-colored in such a way that three colors
are used for these adjacent countries. However, there is an error for the case five
countries.

Although Kempe’s argurment is fallacious, we give him credit for several clever
ideas such as the inductive statement and Kempe chain argument. His ideas are
essential parts for the complete proof of the four coloring problem nearly 100 years
later.

It is not easy to find a political map in the real world to show Kempe's idea
because countries do not normally meet in groups of more than three. Therefore,
quadripoint are excepttional and rare. There are 195 countries in the world today.
Taiwan is not included because the United Nations considers it represented by
people’s Republic of China. There are 176 international tripoints but there is

only possible one international quadripoints.

Figure 3.3: the possible international quadripoint

The possible quadripoint is the borders of Namibia, Botswana, Zambia, and

Zimbabwe. Actually, there is a controversy that it is not a quadripoint but two
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separate tripoints, some 100 or 150 meters apart. However, on the map we should
consider this point as a quidripoint. That is, these four countries do not require
distinct colors.

Here, we define a Kempe chain to be the largest set of countries you can get to

iy

from a given place by keeping to countries of a particular two colors, and crossing

at edges, not vertices.

Figure 3.4: Red-Blue chain containing Botswana,

If we want to re-color the africa map in such a way that three colors are used
for coutries around the quadripoint, we can swap red and blue in the red-blue
chain on Botswana. Since Botswana and Zambia are in distinct red-blue chain,

the color on Zambia is still red.

Figure 3.5: Swap red and blue in the Red-Blue chain containing Botswana

In the case that Botswana and Zambia are in the same red-blue chain, Swap-
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ing red and blue in this chain do not reduce the number of colors around the
quadripoint. Fortunately, the red-blue chain separates Namibia and Zimbabwe
into distinct yellow-green chains. Hence, we can swap yellow and green on the

yellow-green chain containing Namibia.

Figure 3.6: Swap yellow and green in the yellow-green chain containing Namibia

For officaial proof, see the following lemma.

Lemma 3.1. Let M be a four colorable map. If four countries meet at a point
v, then the map cun be 4-colored in such a way that only three colors are used for

these four countries.

Proof. Let M be a four colorable map and let A, B, C, D be four countries that
meet at & point in clockwise order. Suppose that the A, B, C and D are colored
by red, green, blue and yellow, respectively.

Case 1. If A and C do not belong to the same red-blue chain, then we swap
red and blue in the chain containing A.

Case 2. If A and C belong to the same red-blue chain, then B and D are
seperated by this red-blue chain. Hence, we swap green and yellow in the chain

containing B. O
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Next, we will consider a four color map that five countries meet at a point. In
the real world, there is no point that five countries meet. There exists five cities
that meet at a single point; for example, five cities in Florida where they meet in
the middle of Lake Okeechobee. However, the map of Florida is quite large. Then

we will raise an example.

Figure 3.7: A map containing five regions that meet at a single point

Suppose that the five cities are colored by four colors as shown in Figures 3.7.
We will try to color all cities in this four color map in such a way that the five
cities are colored by only three colors by using Kempe chain.

If the red and blue cities do not belongs to the same red-blue chain, then we
swap red and blue in the chain containing region A. Then five regions can be

colored by using only three colors.

Figure 3.8: Swap the red-blue chain containing A
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If the red and yellow cities do not belongs to the same red-yellow chain, then
we swap red and yellow in the chain containing region A. Then five regions can

be colored by using only three colors.

Figure 3.9: Swap the red-yellow chain containing A

For the remaining case, suppose the red and the blue cities belongs to the
same red-blue chain and the red and the yellow cities belongs to the same red-
green chain. Then we swap green and blue in the green-blue chain containing
region E and swap green and yellow in the green-yellow chain containing region

B. Hence, the five cities can be colored by using only three colors.

Figure 3.10: Swap the green-blue chain containing E and swap the green-yellow

chain containing B

The proof is missing a case when the red-blue chain (A-C) and the red-green
chain (A-D) have an intersection. See Figure 3.11. The same algorithm will not
be working. The five cities are still be colored by four colors because whenever
we swap.

Even Kempe’s argument was fallacious, we must give hime credit for crever
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Figure 3.11: An intersection between the red-blue chain (A-C) and the red-green
chain (A-D)

ideas. The inductive argument and Kempe-chain argument are essential for final
proof of the four color problem and it can be applied to prove the five color

theorem.

Lemma 3.2. Let M be a five colorable map. If four couniries meet at a point
v, then the map can be 5-colored in such a way that only four colors are used for

these five countries.

Proof. Suppose that the five countries are colored by red, green, blue, yellow,
orange in clockwise order. If red and blue cities are not in the same red-blue
chain, then we can swap colors in one of the chains to obtain the desired coloring.
If red and blue citues are in the same red-blue chain, then the chain separates the
green and yellow cities from each other; hence, we swap colors in the green-vellow
chain containing either the green city or the yellow city to obtain the disired

coloring. O
Theorem 3.2. Every plane map can be colored by at most five colors.

Proof. We will prove by induction on the number of regions.
It is trivial for basic step when the number of regions is at most five. For
induction step, suppose that every plane map with % region can be colored by

at most five colors. Let M be a map with k + 1 regions. There exists a region,
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say region A, that adjacent to at most five other regions because a planar graph
has a vertex with degree at most five. Then we remove the region to optain a
map with k regions. By induction hypothesis, the map without region A can be
colored with at most five colors. If all regions adjacent to region A are colored by
at exactly five colors, then we can recolor to obtain that the adjacent region are

color by four colors by Lemma 3.2. That is, there is an available color for region
A. d
3.3 Planar graphs

For a map, we can transform it into a graph in order to make it easier to study

and proof any theorem by the following steps.

1. Drawing a vertex in each rigion

2. Drawing an edge for each pair of connected regions.

Note that two regions are siad to be connected only if their boarders are

connected longer than a single point.

Figure 3.12: A graph obtained from a map

The graph we obtain from the procedure is called a planer graph. In other
words, a planar graeph is a graph that can be embedded in the plane. Then we

obtain another version of four color problem which is easier to study.



25

Figure 3.13: Examples of planar graph

Conjecture 3. Every planar graph is 4-colorable.

An interesting theorem is Fuler’s formula which is widely used in statements

related to planar graphs.

Theorem 3.3. If G is a planar graph with v vertices, € edges and f faces, then

v—e+ f=2.

Proof. We will prove by induction on the number of edges. Assume that the
statement is true for a connected planar graph with v vertices, ¢ — 1 cdges and f
faces. Let G be a planar graph with v vertices, el edges and f faces.

If Gis atree,thenv —e+ f =v — (e — 1)+ 1 = 2. Suppose that G is not
a tree. Hence, &G contain a cycle. Let x be an edge in C. Then G — z is still
connected. By indcution hypothesis in G — x, we obtain v — (e — 1)+ f —1 = 2.

Hence, in G, we have v — e+ f = 2. &

Example 3.3. See Figure 3.13. We will show how to count the number of vertices,

edges and faces of each graphs.

1. G, has 6 vertices, 8 edges and 4 faces includeing the outside face. Then

v—e+f=6—-8+4=2

2. G5 has 7 vertices, 11 edges and 6 faces includeing the outside face. Then

v—e+f=7T—-114+6=2.
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3. G has 8 vertices, 14 edges and 8 faces includeing the outside face. Then

v—e+ f=8—144+8=2.

Lemma 3.4. If G is a planar graph with all vertices of degree at least 3, then

> (6 —d(v)) > 12

v

Proof. Let p,q,r be the number of vertices, edges and faces of G. Assume that G
is a planar graph with all vertices of degree at least 3. Then >, d(v) > 3p; hence,
6p—4¢ < 0. Hence, Y (6—d(v)) = 6p—>,,d(v) = 6p—2¢ > (6p—4q)+(6r—2¢) =
6p — 6¢ + 6r = 12 by Euler’s formula. O

Theorem 3.4. If G is a planar graph, then G has a vertex with degree at most 5.

Proof. Suppose that all vertices of G has degree at least 6. Then >, (6—d{(v})) < 0.

It is a contradiction to Lemma 3.4. |

Theorem 3.5. If G is a planar graph with no vertex with degree less than 5, then

G has at least 12 vertices with degree 5.
Proof. Tt follows from Lemma 3.4. 0

A planar graph G is called triangulated {also called maximal planar) if the
addition of any edge to & results in a nonplanar graph. If a planar graph is
not triangulated, then we can add an edge to the graph by without adding new
vertex to obtain a planar graph with one more edge. When we keep doing, we
will have a triangulated graph containing the original graph as a subgraph. Then
if the triangulated graph is 4-colorable, so is the original graph. From now on, we

assume that every planar graph is triangulated.
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Lemma 3.5. Let v be a vertex with degree at most 4 of G. If G — v is 4-colorable,

s0 is (.

Proof. Let v is a vertex with degree at most 4 of G. Suppose that G — v has a
4-coloring. If d(v) < 3, then there is always an available color for v. Suppose
that d(v) = 4 and a,b, ¢, d are neighbors of v If G is not triangulated, then we
do not know structure of edges among a, b, ¢, d; hence, we cannot apply Kempe's
Lemma. Suppose that G is triangulated. Without loss of generality, we can say
that a, b, ¢, d are fouvertices of a face of G — v. Hence, we can apply Lemma to
obtain that there exists a 4-coloring of G — v such that a, b, ¢, d use at most three
colors. Hence, there is an available color for v. Therefore, the 4-coloring can be

extended to G. O

Theorem 3.6. If G is a minimal counterexample to the four color problem, then

G has no vertex with at most 4.

3.4 Reducibility and unavoidable sets

All attempts to prove the four color problem are not mainly different from
Kempe in his paper. Everone try to prove by induetion on the number of vertices.
Even in the final proof, Appel and Haken [2], [3] also used induction on the
number of vertices. The basic step starts from a graph with at most 4 vertices.
The inductive step is to remove a vertex, or a set of vertices, to obtain a smaller
graph. Hence, the smaller graph is 4-colorable by induction hypothesis. The
remaining proof is to extend the 4-coloring to the extra vertex, or the set of extra
vertices. To extend the coloring, we normally need to change the coloring so that
there are available color for the set of extra vertices.

Let H be a graph. We say that any graph contains H as a subgraph is reducible
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or H is reducible if we can always extend a 4-coloring of G — H to a 4-coloring of
G.

By Lemma 3.5, we say that a vertex with degree at most 4 is reducible. As
usual, we assume that there is no vertex with degree less than 5.

A reducible configuration is a subgraph that cannot occur in a minimal coun-
terexample. If a planar graph contains a reducible configuration, then the planar
graph can be reduced to a smaller graph. This smaller graph has the condition
that if it can be colored with four colors, then the original graph can also. This
implies that if the original graph cannot be colored with four colors the smaller

map cannot either and so the original graph is not minimal.

Theorem 3.7. If G s a minimal counterexample to the four color problem, then

G has no seperated triangle.

Proof. Assume that GG has a seperate triangle. Then G consists of two smaller
graphs which intersecte only in the triangle. If two smaller graphs are 4-colorable,
then we can rename the colorings the triangle of a smaller graphs to obtain a

4-coloring of G. Hence, G is not minimal; a contradiction. O

Hence, we can say that a planar graph with a separated triangle is reducible.
An unavoidable set is a set of configurations such that every map that satisfies
some necessary conditions for being a minimal non-4-colorable triangulation (such
as having minimum degree 5) must have at least one configuration from this set.
For example, we can say that a vertex with degree five is unavoidable. If we
CAN prove that a vertex with degree 5 is reducible, then we complete the proof of
the four color problem However, it is not that easy. Kempe try to prove a graph
with a vertex with degree 5 is reducible by using a chain but his proof has a false

when he swaps colors of the second chain.
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To prove the four color problem, we need to find a complicated unavoidable
set, then prove that the unavoidable set is reducible. Historically, many mathe-
maticians try both to find an unavoidable set and to find more a reducible con-

figulation.

Figure 3.14: Birkhoff diamond

Another examaple of a reducible configulation is Birkhoff diamond which is a
vertex with degree 5 with three condecutive neighbours of degree 5. Recall that

our graphs are always triangulated and has minimum degree 5.
Theorem 3.8. The Birkhoff diamond is reducible.

Proof. Let (G be a graph containing Birkhoff diamond. We will prove that G is not
a minimal couterexample to the four color problem. We create a new graph from
G by deleting u,, us, us, ua, then identifying v, and vy, and joining this vertex to

vg. Suppose that the new graph is 4-colorable. Without loss of generality, suppose

Figure 3.15: A graph obtaining from Birkhoff diamond
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that v1,v0,4, g are colored by red, blue, green, respectively. Then vs is colored by
red or yellow, and v is colored by red, green or yellow. To extend the 4-coloring

to the original graph, we color v, u2, 44 by blue, green, green, respectively. Vertex

Figure 3.16: A 4-coloring

u3 can be colored by either red or yellow depeneding a color on vj.
Hence, (¢ has a 4-coloring. That is, G is not a minimal counterexample.

Therefore, the Birkhoff diamond is reducible. O

Lemma 3.6, Let G be the minimal counterexample {o the four color problem.

Then any minimal disconnecting set in G induces at least a cycle.

Theorem 3.9. If G s a minimal counterezample to the four color problem, then

G is 5-connected.

Theorem 3.10. If G is any planar graph which has a separating circust C of
length 5, such that both interior and exterior of C' contain at least two vertices of
G, then GG is reducible.

Theorem 3.11 (Franklin). The configuration of a vertex of degree 5 with three

consecutive neighbors of degree 5 is reducible.

Example 3.7, Consider the configuration of a vertex of degree 5 with three
neighbor of degree 5, one of degree 6 and one with arbitrary degree. Prove that

this configuration is reducible.
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Figure 3.17: The configuration of a vertex with degree 6 with three consecutive

neighbours of degree 5
Proof. Use Theorem of Birkhoff and Franklin. O

Example 3.8. Consider the configuration of a vertex of degree 5 with two con-
secutive neighbours of degree 5 and three neighbors of degree 6. Prove that this

configuration is reducible.

o,
1,
O— O
4
Qb

Figure 3.18: a vertex of degree 5 with two consecutive neighbours of degree 5 and

three neighbors of degree 6

Example 3.9. A vertex with degree 5 with two neighbours of degree 5 and three

neighbouts of degree 6 is reducible.

Example 3.10. Consider the configuration of a vertex with degree 8 with five

consecutive neighbours of degree 5. Prove that this configuration is reducible.
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Figure 3.19: a vertex with degree 8 with five consecutive neighbours of degree 5
3.5 Discharging

For this entire section, suppose that every graph is traianglulate (i.e. maximal

planar graph) and minimum degree is 5. Recall that
Proposition 3.11. 3 y{6 —d(v)) = 12.

Theorem 3.12 {(Wernicke 1904). In any minimal couterexample to the four col-

oring problem, there is a vertex of degree 5 with a neighbor of degree 5 of 6.

Proof. Let G be a minimal counterexample. Assume that no vertex with degree
5 is adjacent to any vertex with degree 5 or 6. Let p; be the number of vertices
with degree ¢ and r be the number of faces. We will count the number of faces of
G.

Each vertex with degree 5 is surrounded by 5 faces. Since each face is incident
to a unique vertex with degree 5. Then the number of faces incident to a vertex
with degree 5 is 5ps5. Each vertex with degree 6 is surrounded by 6 faces. Since
each face is incident to at most three vertex with degree 6. Then each vertex with
degree 6 contribute to at least two faces. Then the number of faces incident to
a vertex with degree 6 is at least 2ps. Then r > 5ps + 2ps = D ic.(20 — 3i)p; =
20 — 332 ips

By the handshaking lemma implies > .2 ip; = 2¢ = 3r. Then 20¢ — 21r =
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1032, ipi—T Y ios ipi = 3 oos ip;. Combining the two inequality to obtain that

r 2 20p — 20q + 21r = r + 40 by Euler’s formula, obtaining a contradiction. O

Theorem 3.13 (Franklin, 1923). In any minimal counterexample to the four color
problem, there is a vertex with degree 5 with two neighbours, each of degree 5 or
6.

To find a complicated unavoidable set, we need to consider not only the neigh-
bours of a vertex of degree 5 but also the neighbors of the neighbors. The counting
argument is more difficult. The idea of discharging, introduced by Heesch, can
overcome this difficulty.

We put a charge of 6 — d(v) on each vertex v. Recall that our graph has
minimum degree 5. The the vertices with degree 5 get a charge of +1, the vertices
with degree 6 are uncharged and all remaining vertices have a negative charge.
By Lemma 3.4, the total charge of a graph is always 12. We first assume that
there exists a graph that contains non of the configuration in an unavoidable set.
Then we will redistribute the charge in some way to obtain the total charge to be
0 or negative. According to charge conservation, we obtain a contradiction. That

is, every graph contains at least a configuration from the unavoidable set.

Theorem 3.14. The set U, in Figure 5.20 is an unavoidable set.

(e—2 o—o)

Figure 3.20: An unavoidable set U

Proof. Recall that our graph has minimum degree 5 and triangulated. Assume

that there exsits a graph G which has non of the configuration in I/;. Then all
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neighbors of all vertices of degree 5 has degree 7. Then we redistribute charge by
the following rule.

Every vertex with degree 5 gives a charge of % to each of its neighbours.

Vertices with degree 6 are not affected by the rule because there is no pair of
vertices of degree 5 and 6. After the redistribution, all vertices with degree 5 have
a charge of 0. Let v be a vertex with degree k£ > 7. Then v has no two consecutive
neighbors of degree 5 because there is no pair of vertices of degree 5. That is, v
has at most ¥ neighbors of degree 5. Hence, v acquires at most { - £. The v has
a charge of at most 6 —k+ £ =6 — & - k <6 — - 7 < 0. Therefor, ther total

charge of G is negative, a contradiction. O

Theorem 3.15. The set U in Figure 8.21 is an unavoidable set.

{o—o &)

Figure 3.21: An unavoidable set [);

Proof. Recall that ouwr graph has minimum degree 5 and triangulated. Assume
that there exsits a graph G which has non of the configuration in [J;. Then vertices
of degree 5 has no neighbors with degree 5 and has no consecutive neighbors of
degree 6. Consequently, the vertices of degree 5 has at most two neighbors of
degree 6. Hence, the vertices of degree 5 has at least three neighbors of degree at
least 7. Then we redistribute charge by the following rule.

Every vertex with degree 5 gives a charge of % to each of its neighbours of
degree at least 7.

Vertices with degree 6 are not affected by the rule because there is no pair of

vertices of degree 5 and 6. After the redistribution, all vertices with degree 5 have
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a nonpositive charge. All vertices with degree 7 has at most three neighbors of
degree 5. Hence, its charge is at most (7 —6) + 3 - % = 0. Let v be a vertex with
degree k > 8. Then v has at most ’—; neighbors of degree 5. Hence, v acquires at
most - &, The v has a charge of at most 6 —k + £ =6—32-k<6-3.8<0.

Therefor, ther total charge of GG is negative, a contradiction. O

To prove the four color problem, it requires a sufficiently complicated dis-
charging rule and a sufficiently sophisticated unavoidable set. Then we need to
prove that every graph contains a configuration from the unavoidable set by the
discharging rule. Finally, we need to prove that every graph in the unavoidable
set is reducible.

In the final prove, Appel and Haken [2] [3] used a discharging algorithm made
up from over 300 separate rules, befored Robertson et. al. found a simpler

algorithm of just 32 rules.



CHAPTER IV

Hadwiger’s Conjecture

4.1 Minor and subdivision

Since Hadwiger’s conjecture state that every graph with no Ky -minor is {-
colorable for every integer ¢ > 0. Then we need to study topics realated to minor.
The contraction of e replaces its vertices v and w by a new vertex u with an

edge ux if v or w uis adjacent to z in G. We denote the graph obtained this way

by G\vw.
N LN
AN ,

Figure 4.1: a graph G and its minor

A minor of GG is any graph that can be obtained from G by repeatedly deleting
vertices and edges and contracting edges. We say that (G contains H as a minor
and write G > H. It is easy to see that the minor relation is transitive. That is,
if G> Hand H > F, then G > F.

A subdivision of a graph G is a graph obtained from G by replacing some of

its edges by internally vertex disjoint paths.

Lemma 4.1. If a subdivision of H is a subgraph of G, then H < G.
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Proof Assume that there exists a subdivision of H is a subgraph of G, say Hp.
Since Hp is a subgraph of G, the graph Hy can be obtained from G by deleting
edges and vertices. Since Hy is a subdivision of H, the graph H can be obtained

from Hy by edge contraction. a

The converse of Lemma 4.1 is not true. See Figure 4.1, H can be obtained
from G by contraction vw. However, any subdivision of H cannot be a subgraph
of G because H has a vertex of degree 6 but the maximum degree of G is 4.

An H-model in a graph G is a collection {S; : x € V(H)} of pairwise vertex-
disjoint connected subgraphs of G (called branch sets) such that, for every edge

xy € E(H), some edge in G joins a vertex in .S, to Sy
Lemma 4.2. A graph G contains an H-model if and only if H is a minor of G,

Proof. Let H and G be graphs. Suppose that G contains an H-model. We
will prove that H can be obtained from G by deleting vertices and edges and
contracting edges. For each connected subgraph of G from H-model, we repeat
contracting until obtaining a single vertex. Then we delete the remaining vertices
and edges which do not belong to H. By definition of H-model, we obtain all
vertices of H and all edges of H.

In the opposite direction, assume that H is a minor of G. We will show that
there exists an H-model of G by induction on |V (G)|. Since H is a minor of G,
there is a sequence of vertex deletion, edge deletion and edge contraction to obtain
H. If a subgraph of G has an H-model, so is G. Hence, we may assume that the
first operation is contraction on edge vw. Let u be the new vertex in G’ = G\vw
obtained from identifying v and w.

By the induction hypothesis, there exsits an H-model of G/, say 4. Then we
constuct a new H-model of G by deleting u and adding vertices u,v and edges

U, O
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Lemma 4.3. Let H be a graph with maximum degree 3. A graph G contains H
as a minor if and only if a subdivision of H s a subgraph of G.H;N P = @.

Proof. Let H be a graph with maximum degree 3. By Lemma 4.1, if a subdivision
of H is a subgraph of G, then G contains H as a minor. In the opposite direction,
assume that G contains H as a minor. Notice that if G has a subgraph such that,
a subdivision of H is a subgraph of G, then the subdivision is also a subgraph
of G. Without loss of generality, suppose that no proper subgraph of &G contains
H as minor. Let p = 51,.9,...,S8y(u be an H-model in G. Recall that S; is a
connected subgraph G.

Accordding the fact that no proper subgraph of G contains H as minor, we

obtain the following statement.

1. Each S; is a tree; otherwise, we can an edge from S; and obtain a proper

subgraph of G containing H as a minor.

2. Each leaf of S; is connected to others S;; otherwise, we can delete the leaf

and obtain a proper subgraph of G containing A as a minor.

3. There is exactly one edge between the pair of 5;,.5;; otherwise, we can delete

an edge and obtain a proper subgraph of G containing H as a minor.

Then each S; is either K or subdivision of K, or subdivision of K 3. Hence,

from a vertex of H, we can construct G by the following operations.

1. If S, is K, then we do nothing.

2. It S, is a subdivision of K», we first subdivide v with an adjacent vertex to

obtain K3. Then we can subdivide to obtain S,.

3. If S, is a subdivision of K3, we first subdivide » with three adjacent vertices

to obtain K; 3. Then we can subdivide to obtain S,.
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O

Theorem 4.1. [13] Let G be a k-chomatic critical graph. If S = {v1, v} 45 a
separated set of V(G), then d(v1) + d(v2) > 3k — 5.

Proof. Let G be a k-chomatic critical graph. Assume that S = {vi,v2} is a
separated set of V{G). Then G — {vy,v2} has at least two components, say
C1,Cs,...,Cy. Define H; for i = 1,2,...,n be a subgraph of G obtained from
deleting all components except C; from G.

Then H; for all ¢ is (k — 1)-colorable since G is critical. Moreover, there is no
edge between v, and vs.

If v, and v, have a same color on all H;, then a (k — 1)-coloring of G can be
obtained by combining (k — 1}-colorings from all H;. If v; and v, have a diffenrent
color on all H;, then a (k—1)-coloring of G can be obtained from all H;. Moreover,
if we can recoloring to obtain two above properties, then a (k — 1)-coloring of G
can be similarly obtained.

Supose that there are two subgraphs, say Hy, Hs, with the following properties.

o On H,, vertices v; and v have a same color and it is impossible to recoloring

to obtain a (k'— 1)-coloring such that v, and vp have different colors.

o On H,, vertices v; and v, have different colors and it is impossible to recol-

oring to obtain a {(k — 1)-coloring such that vy and v, have a same color.

Without loss of generality, suppose that a color on vy, vs of Hy is 1 and colors
on v,va of Hy are 1 and 2. Since it is impossible to recoloring to obtain a
(k — 1)-coloring of Hy such that v; and v, have different colors, there is a (1,4)-
chain containing both v, and ve in H) for all i = 2,3,...,k — 1. Hence, both
and v, are adjecent to vertices with color ¢ for all ¢ = 2,3,...,k — 1. That is,

dHl (UI):dHl ((UQ) 2 k—2
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Since it is imposible to recoloring to obtain a (k — 1)-coloring of Hj such that
both v; and v, has the same colors. Then there is a (1, 2)-chain contaning both v,
and v,. Hence v; and v, are adjecent to vertices with color 2 and 1, respectively.
For i > 3, vertices v, or v, must be adjacent to vertices with color ¢; otherwise,
we can chance color on both #; and v, to ¢. That is, dg,(v1) + dg (12} = k — 1.

Therefore d(v1) + d{(v2) = dr, (v1) + day (1) + d, (v2) +Hdep{v2) 2 b —2+k—
2+k—1=3k-5.

O

Let G and G be two vertex disjoint graph, and let X3 C V(G4) and X, C
V(G,) be two cliques with | Xj| = |Xz2| = k. Let f: X; — X, be a bijection, and
let G by obtained from G; U G, by identifying z and f{x} for every z € X; and
possibly deleting some edges with both ends in the clique of size k resulting from

the identification. We say that G is a k-sum of G and Go.
Lemma 4.4. If a graph G is a k-sum of G1 and Gy, then x{(G) < max{x(G1),x(G2)}

Theorem 4.2. For 0 < t < 3, the graphs with no K,y minor can be built by

repeated clique-sum, starting from grophs with ot most t vertices.

Figure 4.2: Wagner graph V3

Theorem 4.3 (Wagner). A graph G is planar if and only if it contains neither

Ky nor Ksg as a minor.



41

Theorem 4.4 (Wagner). A graph G does not contain Ky as a minor if and only if

G can be obtained from planar graph and Vi by 0-sum, 1-sum, 2-sum and 3-sums.

Theorem 4.5 (Wagner). A graph contains no Kz3 as a minor if and only if it

can be obtained from planar graph and Ks by 0-sum, 1-sum and 2-sums.

4.2 Hadwiger’s conejecture for ¢ < 5

Conjecture 4 (Hadwiger's conjecture). For every integer ¢ > 0, every graph with

no K,y -minor is ¢-colorable.

Hadwiger’s conjecture is proved for £ < 5. In this section, we study how they
proved this Hadwiger’s conjecture.

When ¢ = 1, a graph with no Ko-minor has no edge. Then it is clearly 1-
colorable.

When ¢ = 2, a graph with no Ks-minor is a tree. Then it is 2-colorable. The
first nontrivial case for Hadwiger’s conjecture is ¢ = 3. Hadwiger proved that a
non-null graph with no K;-minor are 3-colorable. He proved that a graph with no
Ks-minor has a vertex with degree at most 2 which implies that all such graphs

are 3-colorable. Later, Dirac|[12] and Duffin[14] are on the same topics.
Theorem 4.6. A graph with no Ky-minor has a verter with degree at most 2.
Theorem 4.7. Every 3-connected graph contains a Ky-minor.

Proof. Let G be a 3-connected graph. Choose two distinct vertices u,v € V(G).
Then there exsits 3 internal disjoint paths P, @, R from u to v. At most one path
can be an edge. Then we can find internal vertices p € V(P) and ¢ € V(). Since
@ is 3-connected, there exsits a path between p, g in G —u—v, say S. Notice that

S maybe intersects P, () several times. Let S’ be a shortest sub-path of S which
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is connected P and @. If S’ and R do not intersect, then PUQU RU S is a K4
subdivision in G. Otherwise, assume that S’ and R share some vertices. Let S”
be the shorttest sub-path of & which is connected P and R. then PUQURU S”

is a K4 subdivision in G. O
The following is the shorter proof for Hadwiger’s conjecture when ¢ = 3.
Theorem 4.8. [40] A graph with no Ky-minor is 3-colorable.

Proof. Suppose there is a graph G that is not 3-colorable and has no K;-minor.
Select such a G with the minimum number of vertices. Clearly, G is connected
and must contain a circuit. Pick an edge e = v,v5 on the circuit.

Let X be a minimum vertex set of G — e seperating v, and v,. Notice that,
X must be an independent set; otherwise, G would contain K as a minor. Let
G —e=G1 UG5 and Gy NGy = X such that Gy and G5 are connected and v, € G
and v € Gs.

Let G be the graph obtained from & by contracting all edges in (+; so that all
vertices of G are identified with v;. Notice that V(G})} = V(G2 — X))} U {v1} and
E(G)) = E(G, — X) U {viz when z € V(G — X) is adjacent to a vertex of G, }.
Define G, similarly.

Since G} and G has no K;-minor and both graphs are smaller than G. Both
(G and Gy are 3-colorable. Without loss of generality, suppose that v, ve from
(7 are colored by 1,2 and v,v; from (G are colored by 3, 1.

Then 3-coloring of GG can be obtained by the following steps.
o All veritces of G1 — X are colored similar to 3-coloring of G.
+ All vertices of Go — X are colored similar to 3-coloring of GY.

o All vertices of X are colored by 1.
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O

In 1937, Wagner[39] points out that four color problems implies Hadwiger’s
conjecture when ¢ = 4. Theorem 4.9 is a proof of Haswiger’s conjecture when

t=4.
Lemma 4.5. Every non-planar graph 4-connected graph contains Kx as a minor.

Proof. Let (G be anon-planar graph 4-connected graph. By Theorem 4.3 G contain
Ks or K33 as a minor. If G does not contain K3 as a minor, then ¢ contains Ky
as a minor. Suppose that (G containsg K33 as a minor. By Lemma 4.3, GG contains
a subdivision of K33 as a subgraph, say H.

Let A = {a,b,c} and B = {d,e, f} be the vertices of H of degree three
corresponding to vertices of two parts of bijection of K33. For z € A, let H,
denote the component of H — B containing x, and for y € B let H, denot the
component of H — A containing y.

Since 7 is 4-connected graph, G — B is connected. we choose a path # in
G — B joining some two vertices in A such that P U H is minimal. Without loss
of generality, let the ends of P are vertices a, b.

Starting from vertex a, let « be the last vertex of P in H, and let y be the
first vertex of P in H,. We devide P into three paths at x and y, say F,, P, B,.
Clearly, P’ is internally disjoint from H, and Hy. By minimality of PU H, P,
and P, are in H; and H,, respectively. We may assume that P’ is disjoint from
H because if P’ intersect H,, Hg, H, of Hy, then we can find a shorter path which
connects two vertices of A.

Since Hy, H,, Hy are disjoint, F, and P, are in at most two of them. There
exist a component from fy, H,., Hy which is internally disjoint from P. Without

loss of generality, suppose that HyN P = @.
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Next, we choose a path @) in G — A joining d to a vertex in B such that QU H
is minimal. Let e be the other end of €. Starting from vertex d, let 2’ and the
last vertex of path @ in H; and let ¢ be the first vertex of path @ in H,. We
devide @ into three paths at 2’ and ¥/, say Qg, @', Q.. Similar to P, @ and Q.
are in Hy and H, and @' is internally disjoint from H.

We claim that H U P U Q@ contains a Ks-minor.

Case 1. P and @ are disjoint. Then we contract path P,, B, @y and @, to
obtain a subdivision of H; in Figure 4.3. Then we contract the edge ¢f to obtain
Ks-minor.

Case 2. P and @ are not disjoint. Since H;NP = @, we obtain that F,NQy =
@ and BNQy = . Since Q). intersects at most one of the paths P, and P, suppose
that B, N Q. = &. First, we contract all intersections to a single vertex and the
we contract F,, P, Q4 and ). except for the edges incident to a, b, d, e to obtain a

subdivision of H, in Figure 4.3. Then we contract the edges af and ce to obtain

I{z-minor. O
a d
b e
¢ f
¥il

Figure 4.3: Extending a K33 — subdivision

Theorem 4.9. If a graph G does not contain K5 as a minor, then G is 4-colorable.

Proof. We will prove by induction on |[V(G}|. Consider a nontrivial separation
(A, B} of G of minimum order, and let X = AN B. By Theorem 4.5, G is not

4-connected. Then [X| £ 3. We consider the case |X = 3|, the other case is



casier,

Let G; and G2 be graphs obtaining from G[A] and G[B)], respectively by
adding vertices 2 and 2z, respectively adjacent to all vertices of X. Since (A, B)
is minimum, Gy and G2 are minors of &. There fore, G1 and G5 do not contain
K5 as a minor.

Case 1. X is an independent set. Let G for ¢ = 1,2 be the graph obtained
from G; by contracting edges zx for all x € X. By the induction hypothesis,
both (] and G, are 4-colorable with all vertices of X receive the same color.
Combining 4-colorings from G and G}, produce a 4-coloring of G.

Case 2. Some two vertices of X are adjacent. Let x be the remaining vertices.
Let GY for ¢ = 1,2 be the graph obtained from G; by contracting edge z;x. Notice
that if we add som edges to make X a clique in G[A] and G[B], then we will
obtain G| and G%, respectively. By the induction hypothesis, both GY and G} are
4-colorable with all vertices of X receive distince colors. Combining 4-colorings

from G} and G, produce a 4-coloring of G. O

A graph G is apez if G — v is planar for some v € V(). Robertson, seymour
and Thomas established Hadwiger’s conjecture for ¢ = 5 by proving that mini-
mum counter example is apex. The following conjecture would provide a more
streamlined proof of their result.

Hadwiger’s conjecture is open for ¢ > 6.

4.3 Hadwiger’s conjecture for ¢t > 6

According to Paul Seymour in his recent survey on Hadwiger’s conejecturee,
the case £ > 6 is still open. It is not know yet whether the graph with no K7-minor

is 6-colorable.
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Kawarabayashi and Toft [20] proved that every graph contains neither Ky nor
K4 4 as a minor is 6-colorable.

Jakobsen [17], [18] proved that every graph with no K7 -minor is 6-colorable
and every graph with no K7 -minor is 7-colorable.

Albar and Gongalves proved that every graph with no Ky-minor is 8-colorable
and every graph with no Kg-minor is 10-colorable.

Rolek and Song [33] proved that every graph with no K,y -minor is (2t — 6)-
colorable for ¢ = 7,8,9. They also proved every graph with no K3 -minor is
9-colorable and every graph with no K¢ -minor is 8-colorable.

A graph G is t-contraction-eritical if x(G) = ¢ and any proper minor of G is

{t — 1)-colorable.
Lemma 4.6. [33] Every k-contraction cirtical graph G satisfies the following:

1. for any v € V(G),a{G[N(v)]) < d(v) — k + 2, where a(G[N(v)]) denotes

the independent number of the subgraph of G induced by N(v);
2. no seperating set of G is a clique.

Lemma 4.7. [38] Let G be any k-contraction critical graph. Let x € V(G) be a
vertex with degree k+ s with a(G[N{x)]} = s+2 and let S C N(z) with |S| = s+2
be any independent set, where k > 4 and s > 0 are integers.

Let M be a set of missing edges of GIN(X)—S]. Then there exsits a collection
{Puw 1 uwv € M} of paths in G such that for each wv € M, P,, has ends {u,v} and
all its intermal vertices in G — N(z).

Moreover, if vertices u,v,w,2 with wv,wz € M are distinct, then the paths

P, and P,,, are vertex-disjoint.

Theorem 4.10. [26] For k > 7, every k-contraction-critical graph is 7-connected.
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Lemma 4.8. 83/ For any 7-connected graph G, if G contains two different Kg-
subgraph, then G > Kj .

Theorem 4.11. [25] For every integer p=1,2,3,...7, a graph on n > p vertices

and at least (p — 2)n — ("51) + 1 edges has a K, minor.

The edge bound in Theorem 4.11 is refered to as Mader’s bound for the ex-
tremal function for K, minors.

For graphs H,, Hs and an integer k, let us define an (H,, Hs, k)-cockade recur-
sively as follows. Any graph isomorphic to Hy or H, is an (H, Ha, k)-cockade.
Now suppose G and G» be (Hy, H, k)-cockade. Let G be a graph obtained from
disjoint union of G, and G- by identifying a clique of size k in ;1 with a clique
of the same size in G3. Then the graph G is also an { Hy, Hs, k)-cockade.

If Hy, = Hy = H, then G is simply called an {H, k)-cockade.

Theorem 4.12. [19] Every graph on n > 8 vertices with at least 6n — 20 edges

either has a Ky ménor or 48 a (Ko 5242, b)-cockade.

Theorem 4.13. [36] Bvery graph on n > 9 vertices with at least Tn — 27 edges
2, 6)-COth1d6, or 43 isommphic to K2,2}2,3’3.

)))))

4.4 Hajos conjecture

Hajés Conjecture is a stronger conjecture than Hadwiger’s conjecture. Hajos
Conjecture says that every graph of chomatic number at least k contains a sub-
division of K. Catlin [?] showed that Hajos conjecture fails for each k > 7, while
k < 4, Dirac {12] verified the conjecture. Erdds and Fajtlowicz [15] showed that
Hajos Conjecture failed for almost all graphs. Later, Thomassen [37] discovered
many interesting counterexample to Hajos Conjecture. Mohar [28], Rodl and Zich

[?] showed counterexamples from the view point of embeddings of graphs. For
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k =5, Yu and Zickfeld [41] proved that a possible minimal counterexample to the
conjecture is 4-connected. Hajos conjecture is false for most graphs; however, it
is true for some special classes of graphs. For example, the conjecture is true for
the line graphs of simple graphs [38], graphs with large girth [21], [22]. In 2010,
Deming Li, mingju Liu and Yumei Peng found a characterization for cycle power

graphs C* on Hajos Conjecture.



CHAPTER V
HADWIGER’S CONJECTRURE AND INFLATION OF

7-GRAPH

5.1 Main results

The main results of this reseach article is to prove that all inflations of 7-graph
with minimum degree three satisfy Hadwiger’s conjecture.

To prove the main result, we divide the prove into four parts; four sections.
The first part is to stydy exist results about inflations of graphs. The results of

the first part is all inflations of the following results satisfy Hadwiget’s conjecture.

a graph with x(G) <3
+ a graph with a(G) <2 and n <11
» a perfect graph

+ agraph builted from clique-sum without deleting edges from graphs satifying

Hadwiger’s conejecture.

» a join of two graphs satisfying Hadwiger’s conjecture.
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The second part is to prove that a 7-vertex graph with minimum degree three

without the properties must be one of the four graph in Figure 5.1.

Figure 5.1: the four 7-graphs

The third part is to find the chomatic number of the four graphs. Let G; be
the graph with in the Figure 5.4 and the vertices of G; be labelled as indicated for
i =1,2,3,4. Let G} be an inflation of G; where each vertex v; has been inflated
to a kj-clique on a vertex set V; for all j.

masc{w(GY), [N} if ky < by + s
Theorem 5.1. x(G}) =

max{w(G), [ZEU=R} ik >k + ke

max {W( G, ), [ACakbkeTta if ky < min{ks, ks} + ke
Theorem 5.2. x(G5) =
max{w(G,), [Wﬂ if kr > min{ky, ks } + ke

Theorem 5.3. X( ’3) = max‘[W(Gé), I-n{G’az)_—kY.I}‘

Theorem 5.4. Let M =ky + ko + ks + k7 and N = ks + kg + k¢.

masc{w(Gh), [l i min (ky, ks, kr} < M0
Then x(G)) =

maxc{w(GY), [HAN Y i min{ky, ks, kr} > MK
The fourth part is to prove that each of G} has a complete minor of order at
least x(G;) for i = 1,2,3,4. Hence, we canclude that all inflations of 7-vertex

graph with minimum degree three satisfy Hadwiger’s conjecture.
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5.2 History

Given a graph G with vertex set V{(G) = {v1,vs,. . .,v,} and positive integers
ki, kg, ..., kn, we define the inflation G' = G(ky, ks, ..., kp) of G to be graph ob-
tained from G by replacing vertices vy, v, . .., v, by disjoint cliques A;, Ag, ..., a5,
of size ki, ke, . .., kn, respectively, such that vertices of # and y where z € V(A,)
and y € V(A4;),s # t are adjacent if and only if v, and 2, are adjacent in G.

The cliques A;, As,..., A, are referred to as the inflated vertices, and the
numbers ky, ko, ..., k, as inflation sizes of G'. If ky =k, = ... = k,,, then G' s a
uniform inflation. We also say that G’ is obtained from inflating G.

A reason why we study Hadwiger’s conjecture for inflations of graphs is from a
counterexample of Hajée Conjecture which states that every k-chromatic graphs
contains a subdivision of the complete graph with k vertices. In 1979 Calin [9)
proved that Hajés Conjecture is false for £ > 6. Surprisingly, Catlin’s coun-
terexaples are uniform inflations of the 5-cycle which are very simple.

According to the fact that if a graph G contains an H-minor, then & contains
H-subdivition. Hence, if a graph satisfies Hajés conjecture, so is Hadwiger’s
conjecture. To find a counterexample to Hadwiger’s conjecture, we will focus on
a counterexample to Hajos conjecture.

There are some results on Hadwiger’s conjecture for in flation of graphs. Ped-
ersen [29] proved that there is no counterexample to Hadwiger’s conjecture can
be obtained from inflating the Petersen graph. Thomassen [37] proved that a
graph G is perfect if and only if every inflation of G satisfied Hajds conjecture.
That is, Hajés conjecture is true for every inflation of a perfect graph. Therefore,
Hadwiger’s conjecture is also true for every inflation of a perfect graph Plummer,
Stiebitz and Toft stated that there is no counterexample to Hadwiger’s conjecture

can be obtained from inflating a graph with independence number at most 2 and
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order at most 11. Casselgren and Pedersen [8] prove that no counterexample to
Hadwiger’s conjecture can be obtained by inflating a 3-colorable graph. We can
conclude that for a graph G with at most 11 vertices, If G is perfect or a(G) < 2

or x{G) £ 3, then G satisfies Hadwiger’s conjecture.

5.3 DBasic properties and examples

Recall that an inflation of Cy is a counterexample to Hajos conjecture. Here,
we will show that all inflation of Cg satisfy Hawiger’s conjecure. Let G’ be an
inflation of Cs. We will divide the proof into two parts. The first part is to show
that x(G') = max{w(G"), [ﬂgl]} The second part is to show that G’ has a

complete minor of order max{w{G"), [@1}
Lemma 5.1. [29] Let G" be an inflation of Cs. Then x(G') = max{w(@), [2E27}.

Proof. Suppose that each vertex v; of C5 = v1vou3v4u5 is inflated to a ki- clique
on a vertex set Vi of cardinality k;, and let G’ be a resulting graph. We will
apply induetion on n{G'). If a{G) < 1, then the statement holds. Suppose that
n{G’) > 2 and the statement holds for any inflation G” of Cs with n{G") < n(G").
Since G’ is an inflation of Cs, there is no independent set of size 3. That
is, at most two vertices have the same color. Then x(¢’) = [#&2]. Obvicusly,
X(G") 2 w(@); hence, x{G') = max{w(G), ,’1(221]} It remains to show that
X(G') € max{w(G") or x(G") < [%Z}.
Case 1. w{G') 2 1'2(2211 We will prove that G’ has an w(G')-coloring to confirm
that x(G') < w(G’). Without loss of generality, suppose that k; + ky = w(G).
Let A and B be sets of disjoint colors of size k; and ks, respectively. According

to the fact that W(G) = k| + kg, we obtain k3 < k; and ks < ky. Let Ay C A

and B, C B of size ks and ks, respectively. Since w(G') > [™52], we obtain
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2Ky + 2k > Ky + Ky + ks + ky + ks. That is, ks < (ki — ks) + (ka2 — k).

Then there exsits an w(G')-coloring f of G’ such that f{(V}) = A, f(V;) =
B, f(V3) = A1, f(Vs) = By and f(Vy) C (AN A1)U{B\ By). Hence, the statement
holds.
Case 2. w(@) < [@] — 1. Then & is not a complete graph. Let u and v be
nonadjacent vertices of G’ and G” be the graph obtained from deleting u, v from
G

By induction hypothesis x{G") = max{w(G"), [-’3-((233]} = ["(TG")] because
w(@) <w(@) < [ME — 1= 2],

A coloring of & can be obtained from G” by using a new color on u and v.
Therefore, x(G') < x{(G") +1 = [ﬂ%.l +1 = [@] Hence, the statement

holds. O
For the second part, we will show the stronger result.

Lemma 5.2. [29] Let G’ be an inflation of Cs Then (7' has a complete minor of

n(c i BT gL B
ler at least ™ ‘+mm{1';_.k_ﬂg kaka}

Proof. Suppose that each vertex v; of C5 = vivevavvs is inflated to a k- clique
on a vertex set V; of cardinality k;, and let &' be a resulting graph. Without loss
of generality, let k; = min{k, ko, k3, ks, ks} and ks + ks > k4 + ks. Then VoN V3
is a clique of size ky + k3.

Let u be any vertex of V;. Since k) < &y and k; < k3, there are internal disjoint
path from u to all veritces of V3. According to definition of inflation, u is adjacent

to all vertices of V3. Hence G’ has a complete minor of order k) + ks + ks >

N(G’)-i-min{h ,kg.kg,khk‘;} D
3 2

A cligue-sum is a way of combining two graphs by gluing them together at a

clique. If two graphs & and H each contain cliques of equal size, the clique-sum
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of G and H is formed from their disjoint union by identifying pairs of vertices in
these two cliques to form a single shared clique, and then possibly deleting some
of the clique edges. A k-clique-sum is a clique-sum in which both cliques have at
most k vertices If a graph & is obtained from clique-sum of a graph H; and Hy
without deleting edges, then x(G) = max{x(H), x(H2)}. That is, if both H; and
H, satisty Hadwiger’s conjecture, so is G. Moreover, if all inflations of A, and H,
satisfy Hadwiger’s conjecture, so are inflations of G.

The neighborhood of v, denoted by N(v) is the set of vertices adjacent to v. By
applying clique-sum, if v is a vertex of a graph G such that N(v) is a clique and
G — v satisfies Hadwiger’s conjecture, then G also satisfies Hadwiger’s conjecture.

The join of graphs G and G5, denoted by G V G, is the graph with V{G; v
G2) = V(G1) UV(Gy) and E(G, V Gy) = {uv : u € V(G1),v € V(G2)}. Observe
that if G; has a-minor and G, has b-minor, the join graph G, vV G; has a (a + b)-
minor and (G, V G2} = x(G)) + x(G2). Then if G; and G, satisfy Hadwiger’s
conjecture, so is G1 VGa. Moreover, if all inflations of G; and G satisfy Hadwiger’s
conjecture, so are inflations of Gy V G2

A wheel graph is a graph formed by connecting a single universal vertex to all
vertices of a cycle. In this paper, W, denote a wheel graph with n vertices where
n 2 4. Since a wheel graph obtain from joining a cycle with a vertex, the wheel
graph satisfies the Hawiger’s conjecture.

Any inflation of a wheel graph can be builted from connected all vertices from
a clique to all vertices of an inflation of a cycle. Since any inflation of a cycle
satisfies Hadwiger's conjecture, so is any inflation of wheel graphs.

A perfect graph is a graph with the property that, in every one of its induced
subgraphs, the size of the largest clique equals the minimum number of colors in

a coloring of the subgraph. That is, a graph G is perfect if x(H) = w{H) for every
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induced subgraph H of G. The strong perfect graph theorem [10] states that A
graph is perfect if and only if neither the graph nor its graph complement contains
an odd graph cycle of length at least five as an induced subgraph. It was conjec-
tured by Claude Berge in 1961. A proof by Maria Chudnovsky, Neil Robertson,
Paul Seymour, and Robin Thomas was announced in 2002 and published by them
in 2006

A perfect six-vertex graph with chromatic number at least four must be a wheel
graph with six vertices. Then the graph has no independent of size 3. Hence, all
six-vertex graphs satisfy Hadwiger’s conjecture.

We can conclude that graphs satisfy Hadwiger’s conjecture.
+ a graph with x(G) < 3

» a graph with a(G) < 2and n <11

+ g perfect graph

« agraph builted from clique-sum without deleting edges from graphs satifying

Hadwiger’s conejecture.

a join of two graphs satisfying Hadwiger’s conjecture.

In this chapter, we will prove if G is a 7-vertex graph without the mension
properties must be one of the five graphs in Figure 5.1. Then we find the chro-
matic number of the five graphs and prove that the five graphs satisfy Hadwiger’s
conjecture. Therefore, we can conclude that all inflations of a graph with at most

seven vertices satisfies Hadwiger’s conjecture.



5.4 The four 7-graph

Lemma 5.3. Let G be a graph with at most seven vertices with the following

properties.
e x(G} =>4

o(G) >3

imperfect

there is no vertex v such that N(v) is a clique

there is no vertez with degree one and siz.
Then G must be a graph from Figure 5.1

Proof. Let GG be a graph with at most seven vertices with all mention properties
By the strong perfect graph theorem, the graph G or its complement ¢ contains
an odd cycle as an induced subgraph. Notice that G is not C because of x(G) > 4
and G is not C; because of a(G) 2 3. Moreover, if G contain Cs as an induced
subgraph, so is G. Therefore, the graph G contains Cs as an induced subgraph.
Let Cs = viunv3uats and vg, vy be the two remaining vertices of G such that
d(vg) > d(vq).

Observe that x(G —.5) > 3 for all independent set § C V(G). If there is an
independent set .S of size at least three containing both vg and v, the graph G
is 3-colorable because G — S is a subgraph of a path; contradiction. That is, an
independent of size at least three must contain a vertex from vg, v7 and two vertices
from v, v2,v3,v4,v5. Without loss of generality, assume that S = {ve,vs,v7} is
an independent set of size 3. Hence, v; is adjacent to at most three vertices of Cs.

Since & is not 3-colorable, G — S is not a path for any independent set 5. Then
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G — S must contain an odd cycle; the only possibility is vsvsts is a triangle. That
is, vg is adjacent to both v4 and vy
Case 1. vg is adjacent to all vertices of (5. Then vg and v, are not adjacent
because there is no vertex with degree six. If d{v;) = 2, then G is the first graph
in Figure 5.1 because N(v;) is not a clique. If d(v;) = 3, then G is the second
graph in Figure 5.1.
Case 2. vg is adjacent to all vertices of Cs except v1. If v7 is not adjacent to v,
then d{v7) = 2 and G — 7 is not 3-colorable. That is, v; is adjacent to vg, vy, Vs.
Therefire, N(v;) is a clique; contradiction. Hence, v; must be adjacent to v;.
Since G is not 3-colorable, G — S is not a path for any independent set S.
Since G — v, — vy — ¥7 is & path, we obtain that {vs,v4,v7} is not an indepensent
set. That is, v; is adjacent to v4. Similarly, we can conclude that 7; is adjacent
to vs. If vg and vy are adjacent, then G is the third graph in Figure 5.1. If v and

vy are not adjacent, then G is the fourth graph in Figure 5.1.

5.5 The chromatic number of the four graphs

To find the chromatic number of an inflation of graphs from Figure 5.1, we
need to find the chromatic number of an inflation of the four 6-vertex graph in

Figure 5.2

Figure 5.2: Four 6-vertex subraphs
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For j = 1,2,3,4, let H; be the graph with in the Figure 5.2 and the vertices
of GH be labelled as indicated and Hj be an inflation of H; where each vertex v;

has been inflated to a k;-clique on a vertex set V; for all 4.
Lemma 5.4. x(H]) = max{w(H]), [ H1 )+ks ).

Proof. Let H} obtained from H] by deleting V5. Then x(Hj) = x(I7) + ks and
w(H}) = w(HY)+ k because each vertex of V; is adjacent to all remaining vertices.

Since HY is an inflation of Cs, we will apply Lemma 5.1,

x(H1) = x(Hy) + &
1'%(H p

— masefuw(E), [P o
—m{w(H’fHkﬁ g + k)
— max{w(H]), rMn

Lemma 5.5. x(Hj) = max{w(H}), [2€21)}.

Proof. Since at most two vertices of Hj have the same color, we obtain x(Hj) >
{"(—;I'L}] Moreover, x(Hj) = w(Hj) because a maximum clique of Hj requires
w(H}) colors. Then x{H3) > max{w(Hj), 1'“(—;@]}.

For every proper coloring f of Hj, we have f(Vg) N f(V;) = @ for i = 2,3,4,5.
To find the smallest number of colors, we will focus on a proper coloring f of Hj
such that f(V1) C f(Ve) or f(Ve) C f(Vi). Let k = min{ky, ke}. We first use k
colors to color vertices of A; and Ag. Let Hj denoted an induced subgraph of Hj
induced by the set of uncolored vertices. Notice that w(H})+ k = w(H;) because

every maximal clique of H, contains either v; or vs.
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Tf ks = ky, then HY is a path; hence, x(Hz) = w(H3} < max{w(H3}, [9%152]}
If k¢ > ky, then H is an inflation of the graph Figure 5.3; hence, x(Hy) =

wW(HY) < max{w(Hy), 257},

Figure 5.3: A figure for Lemma 5.5

Suppose that kg < k;, then Hj is an inflation of Cs ;shence, x(HY) = max{w(H3), [P_(szi'_)]}
" n{Hy g H,
by Lemmsa 5.1. Then x(Hj) < max{w(H3), [%l'l}+k6 = max{w(H3), [%l]}

O
Lemma 5.6. If w(F) = ks + ka + e < ky+ kg + ks, then x(Hj) = [232]

Proof. Assume that w(Hj) = ks +kq+ks < kit+ka+ ks. Let k be an integer such

that k = [lthetlebificte]  According to wi(H3) = ks | ka + ks 2 ki + ks, we

obtain k = [Ruthethackikike <= [A] < kg, Similarly, k < kp.
We first color-each k vertices of V5 and Vs. Let Hj denote a subgraph of H”3
induced by the set of uncolored vertices with new vertex sets ViCVeand V5 C Vs

and cardinality &, and k{. Then we obtain the following statements.
1. ky < ka+ka+ ks — ks — kg
2. kb <ko <ky
3. kL < ks < ks
4. k+ ks + kg + ke = [252)

Let A, B and C be disjoint sets with cardinality ks, k4 and ke. Let Ay C Aand

By C B be disjoint sets with cardinality, k} and kj. Then there is a (ks +k4-+ Ke)-
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coloring of HY such that f(Vs) = A, f(Va) = B, f(Vs) = C, f(V}) = Ay, f(V§) =
By and f(V;) C AUBUC ~ A, UB,. Hence, x(Hj) < k+ ks + kq + ks = [252)],
Since at most two vertices of H} have the same color, we obtain x(H;) 2>

|'”(—‘;Iﬂ'| Therefore, x{Hj}) = [1‘1‘;—@] |

Lemma 5.7. x(Hj) = max{w(H}), [2-mintkalskl 1y

Proof. Let k = min{ks, ks, k¢}. Without loss of generality, suppose that ky > ks.
At most three vertices of H; have the same color and at most k colors can be used
on three vertices. Then x(Hj) > k + [fﬂéz)_ﬁ] = [ﬁ"—;i';"'l Hence, x(H{) >
max{w(Hj), 25541}

We first color & = min{ks, ks,ke} vertices from each of V,,V;5,Ve. Let HY
denote a subgraph of Hy induced by uncolored vertices.

If k = ke, then x(H%} = max{w(Hg), [@]} by Lemma 5.1. Hence, x(Hj) <
X(HY) + k = max{w(Hg) + k, [255] + k} = max{w(Hj), [252-51).

Suppose that £ = k5. Then HY} is the graph wtih new vertexsets V; C V5, V{ C
Vs and cadinality &3, kg, respectively.

Case 1. VUV, UV is a maximum clique. Then & < ks + ky, ky + k5 > k5,
b+ b+ Ky > Fy - & and w(Hp) > [2550].

Let A, B and C denote disjoint sets of cadinality k3, k4 and kg, respectively.
Let A; be a set such that 4, C Aif k) < kgand A C A C AU B if &y > ks.
Then there is an w(Hj )-coloring of Hj such that f{(V3) = A, f(V4) = B, f(V{) =
C, f(Vi) = Ay and f(V;) CBUC N Ay
Case 2. ViUV is a maximum clique. Then k3 < ki, kg < kb, k1 + &, = ks +ka+kg
and w(HY) > [244)).

Let A and B denote disjoint sets of cadinality k; and k), respectively. Let
A; € A and B; C B denote disjoint sets of cadinality ks and k§. respectively.

Then there is an w(Hj)-coloring of Hy such that f(Vi) = A, f(W2) = B, f(V3) =
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A, f(Vg) =B and f(Vi) CAUBN A U B,
Case 3. V1 UV is a maximum clique. Then &) < ki, ks + kg < kg, by + K >
Ky + ks + Ky and w(Hy) > 2,

Let A and B denote disjoint sets of cadinality k; and kg, respectively. Then
there is an w(Hj )-coloring of Hj such that f(V}) = A, f(V{) = B, f(V4) € B and
f(zuvy) C A

Hence, we obtain that x(Hj3) = w(HY) > [@] Notice that each maximal
clique of Hj contains exactly one vertex from v, s, 6. Then w(Hj} = w{Hy) + k.

Therefore, X(H3) < X(H2)+k = w(HY) +k = w(Hj) = max{w(H}), [2H=F,

m
Lemma 5.8. x(H}) = w(H}) > 24

Proof. Notice that one clique from V) UV,, ViUVE, VaUVaUVE and VaUVRUVEUVG.
Case 1. Vi UV, is a maximum clique of Hy. Then k, > ke, k1 = ks + ks,
ki + k2 > ka + kg + ks + kg and w(Hj) > 2H4,

Tet A and B denote disjoint sets of cadinality, k; and k,. Let A; and A,
denote disjoint fixed subset of A of cardinality, k3 and ks, respectively. Let B;
denote fixed subset of B of cardinality, ks. Then there is an w({H})-coloring f
of Hy with f(V1) = A, f(Wa}. = B, f(V3) = A1, f(V5) = Ay, f(Ve) = By and
F(V)) S(AUB)\ (A1 UA U By).

Case 2. V1 U Vg is a maximum clique of Hy Then ks > ky, ky > k3 + kg + ks,
Ko + ky > ko + ka + kg + ks and w(H}) > 2,

Let A and B denote disjoint sets of cadinality k; and ks, respectively. Then
there is an w({H))-coloring f of H with f(W4) = A, f(Vs) = B, f(Vz) C B and
FVauVauls) € A

Case 3. V,UV3U V5 is a maximum clique of Hj. Then ks + ks > ki, ks > ky + ks,

ko + ks + ks > Ky + Ky + ke and w(H) > 284,
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Let A, B and C denote disjoint sets of cadinality, k», k3 and ks, respectively.
Then there is an w(G')-coloring f of Hy with f(V2) = A, f(W5) = B, f(Vs) =C,
f(M) € BuCand f(V,UVe) C A
Case 4. V3 UV U VU Vg is a maximum clique of Hj. Then k4 + kg > ko,
ks + ko + ks > ky, ki + ke > ks + ks + ks + ke and w(H}) > 2E9

Let A, B and C denote disjoint sets of cadinality, k3 + ks, k4 and ks. Let C)
be a set such that C; C Cif ky < kg and C € BUC if ky < k. Then there is an
w(Hy)-coloring f of Hj with f(VaUVE) = A, f(Vi) = B, f(Vs) = C, f(Va) = Gy
and f{V1) C (AU B)\ (L. O

Figure 5.4: The four 7-vertex graphs

Let G; be the graph with in the Figure 5.4 and the vertices of G; be labelled
as indicated for i = 1,2,3,4. Let G be an inflation of G where each vertex vy
has been inflated to a kj-clique on a vertex set V; for all j.

max{w(GY), [FHSEET} i e < kot K
Theorem 5.1. x(G)) =

max{w(@), [“H1} 2kt
Proof. Case 1. ky < kg+ka. Then V3 UV; and VaUV; are not a maximum clique.
Hence, w(G]) = w(G) — V7). If f a coloring of G — V7, then we can extend f to
be coloring of G’ by assigning f(V7) C f(V2)U f(Vs). Hence, x(G1) = x(G; —V4).
By Lemma 5.4,
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X(GY) = x(Gy ~ V&)

= max{w(G;, — V&), [”(G’" _2% )+ k61}

nC)-l-Ai- A.l}

..a

= max{w(Gy), [

Case 2. k7 > kg + ky. If f is a coloring of G| — V2, then f can be extend to a
coloring of Gj by giving f(Va) = f(V2) ~ f(Vs). Then x(G}} = x(G} — V2). By

Lemma 5.5,

X(G1) = x(Gy — V)

Gn’ .‘[‘ 9

2y

= max{w(G), [T ——1}

Corollary 5.9. x(G)) =max{w(G,), [2< ]J-;k"_k"], f’!((;ﬁgl_kz.l}

Proof. It obtained from kp + ke = k7 if and only if |'"” G }jh;"‘ff‘"?'-* >], |-n(G’12)—kz]. O

max{w(Gy), [MHFE} if by < mindky, ks} o+ ks
Theorem 5.2. x(G5) =

max{w(Gy), [MEL=UIN  if iy > min{ky, ks) + ko
Proof. Notice that each vertex of Vj is adjacent to all vertices except vertices of
V4. Let k = min{ke, k7}. We color k vertices from each of V5 and V7 by k colors.
Let Gj be the remainging graph. We obtain that w(G}) = w(G) + k because

every maximal clique of GG; contains either vg or vy



Case 1. k = k; < k. Then k; < min{ke, ks} + k¢. By Lemma 54,

x(G") = x{(G3) + ke

= ma,x{w(G ) |- G’»‘ 2(]06 — k'?)_l} P k,?
= max{w(Gﬂ) + ks, |-(n(Gf§) == 2;7 Ao — k'?‘l}

Case 2. k = kg < k7. By Lemma 5.7,

x(G) < x(G3) + ks

= max{w{G3), [n(Gg) = mjn{;:g, o s kS}]} —+ ks
— mex{w(G") + ke, |_ G'{JJrZ.‘»g)—nlom{fn ks, kr (‘}.l}
= maxfu(Gy), [ = it ndn b = ok,

If ky < min{ks,ks} + ke, then x(Gy) = max{w(Gy), [MELR=MT} If by >
min{ks, ks} + Ko, then x(GY) = max{u(Gy), [HEEGHEE) O

Corollary 5.10. x(Gh) = max{uw(Gy), [ Hh=bry, pr@oninllakel)y

Proof. Tt is obtained from [2G2kthe=ti]y > nl@)-minfkaks}y i¢ and only if by <
min{ ke, ks } -+ k. 0
Theorem 5.3. x(G) = max{w(Gy), [XE=*11},

Proof. Without loss of generality, suppose that ko > ks. Let &k = min{ks, k7 }. We

color k vertices from each of V5 and V7 by k colors. Let G5 be the remainging

graph. We obtain that w(G5) = w(G3) + k because every maximal clique of Gy



contains either vz or vy
Case 1. k = ks < ky. By Lemnma 5.8, x(G}) < x(G3) + ks = w(GE) + ks = w(G).
Hence, x(G5) = w(G5).

Moreover, w(GY) + ks 2 G o gy = 2O 4 g — (G} 4 (e gy >

WGk » [0(G)=k1) Therefore, x(G) = maxfw(G,), [2Ca=k111,

2 2 2

Case 2. k = ky < ks. By Lemma 5.5, x(G4) < x(G§)+kr = max{w(G3), [25i11)}+

ky = max{w(G}), [ﬁz)_i}} Since at most three vertices have the same color

and at most ky colors can appears on three vertices, we obtain x(Gj) > k7 +

"(Gai_"“’" = ”(‘T?EW,J_"'T. Then, x{G5) > max{w(G5), [——JL—”((’Y"‘_J:"L"']}. Therefore, x(G4) =
max{w(Gy), (=17} O

Theorem 5.4. Let M =k + ko + ks + kr and N = k3 + ky + ke.

masefe(CY), [ IR ERbI Y of min{ky, ks, k) < MG

Then x(G)) =
max{w(Gy), [MEHEERY it min{ky, ks, kr} > MY

Proof. Withomt, loss of generality, suppose that k; = min{ks, ks, k7}.
Case 1. 3k; < M — N. Observe that at most three vertices of G have the
same color and at most k; colors can be used on three vertices. To color all
vertices of G, we need at least k7 + [M] = [ﬁ‘éi] Hence, x(G}) >
max{w(Gy), [}

We first use k; colors to color each vertices from each V5, V5 and V2. Let G}
be a subgraph of G induced by uncolored vertices with new vertex sets V3, V{
and cardinality, k5, k5. Since 3k; < ky + ks + ks + k7 — ks — kq — kg, we obain
k1 + Ky + ki > ks + ka + ke and G7] is isomorphic to Hj.

If VUV U Vs is a maximum clique of G, then we apply Lemma 5.6 to obtain

X(Gh) < X(G)+hr < [5G0 4y = [ < [HA < [max{w(GY), [ME-).

Otherwise, w(Gy) = w{GY) + ky and we apply Lemma 5.5 to obtain x(G}) <
X(G) + kr = max{w(GY) + br, [G2] + by} = [maxc{w(G), [“H~)].
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Case 2. 3k; > M — N. At most three vertices of (7 have the same color and at
most k7 colors can be used on three vertices and V, LU VU V; requires ko + kg + ks

colors.

X(GY) = kr + ke + ks + kg
_ [(k3+k4+k6+3k7)+(2k2 + 2k4 + 2ks)

3 ]
>

(k]_ + ko + k5) -+ (k’; + 2k; + 2ky + 2’66).'
3

(G bt btk

3

Hence, x(G}) > max{w(Gy), [MCalthsthuths 1y

Let & = [ 22ke] Then k = [fithethutio—ko—hizhe] = [M=NT < gy,
First, we use k color to color each k vertices from each V5, V; and V4. Let G be
the remaining graph with new vertex set. V3, V{ and V7 with cardinality k%, &% and
k., respectively. Since 3k; > M — N, we obtain &y + k) + kL + K, < ky + kg + k.

Without loss of generality, suppose that W UV, Uz or VUV, U V; is a
maximum clique of G.

Case 2.1. V4 UV, UV is & maximum clique of GYf. Moreover, we obtain
Vo UV, UV is a maximum clique of G and w(G))) = w(GY) + k. Let A, B and C
be disjoint sets of cadinality k5, ks and k. Let A’ C A of cardinality k4.

Observe that k{ < kg or k7 < kg because ky +-ky-+ky+K, < ko+ky+ke. Without
loss of generality, suppose that &} < ks, let B’ C B of cadinality &;. Then there
is an w(GY)-coloring of G with f(V§) = A, f(Vs) = B, f(V) = C, f(Va) = 4,
JV) =B and fiUW)=AUBUC N AUB Hence, x(G}) < x(G)) +k <
W(GY) + k = w(G,) Therefore, x(GY) = w(G") < max{w(Gy), [MGlthstkiths)

Case 2.2. V3U V34U V5 is a maximum clique of G Then k) < kg, ki < k3 and
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K, < ks. Let A, B and C be disjoint sets of cadinality ks, ks and ks. Let A’ C
A,B' C Band C' C C of cardinality &, ki and k. Then there is an (ks + kg + ks )-
coloring of Gj with f(V3) = A, f(Va) = B, f(Vs) = C, f(V3) = A, f(V§) = B,
f(V))=C"and f(V1) = AUBUC N AU B U Since k3 + kg + kg is the size
of a clique of G}, we obtain that x(G3) = ks + ka + ks

x{Gy) < x(Gy) +k

n(GY) — 2ks — 2ky — 2k

=kyt+kst+kst+ [ 3
= [""'{Gﬁ] T A‘; += ka4 fn.‘(i-l

(& fog 4+ ka + kg
< maxful Gy, [TEA E R Rt ey

Corollary 5.11. x(G)) = max{w(G}), rnmg)*nﬁ;{ka‘hh}]a F”"‘?Q’”‘};‘ Hhetbel}.

Proof. Tt is obtained from [MCa-minlhaksbnly s pal@lthsthithe] i gng only if

ka+ ka+ ke+2k; <k + ks +ks. O
Corollary 5.12. If w(Gy) = ko + ks + ke, then x(G)) < ki + ko + ks + ke.

Proof. Let A,B,C and D be disjoint sets of cadinality ko, ks, ks and k;. Let
A’ C A be a set of cardinality k4 and let B’ C AL B~ A’ be a set. of cardinality B’
Let C' € AUC N A’ be a set of cardinality C’. Then there is an (ki + ke + ks + kg)-
coloring of G} with f(Va) = A, f(Va) = B,f(Ve) = C,f(Vi) = D, f(Va) =
A, f(Vs) = B and f(V§) = C'. =

5.6 Complete minor

Lemuma 5.13. Let H, be the graph with in the Figure 5.2 and the vertices of
H, be labelled as indicated. Then H| has a complete minor of order at least

IIIIH'; }+.ﬁ‘gi+rhin{k_1 sk Ry ks }
2
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Proof By Lemma 5.2, H]—V; has a complete minor of order niH; _1';’)+"Jj“2{k" bakakaka}

Since each vertex of V; is adjacent to all remaining vertices, the graph Hj has a

. nl H =V ind kg kaks,hy ks 11 ) 4+-ke i S B B
minor Of Order H(f‘f-l ‘(.]-l-l'ﬂll'll;{f],L_‘L_h,‘u,ﬁu} + kﬁ = l‘l[ffl )+ (,—I—nlll;{kl ko kg kg k }. D

Theorem 5.5. Hadwiger’s conjecture holds for any inflation of Cs.

Proof. Let G be an inflation of Cs By Lemma 5.1, we obtain that }'(G') <

max{w(G'), ["(f)]}. Obviously, G' has a complete graph of order w(G') as a

subgraph. Then G’ has a complete minor of order w(G'}). By Lemma 5.2, G’ has a

complete minor of order M tminikukakakiks} > (23] Hence, G* has a complete

minor of order at least x(G’). O
Lemma 5.14. Then H} has a complete minor of order at least [%a]

Proof. Without loss of generality, suppose one clique of Vi UV, VoUVaU Ve, VaU
ViU V5 is a maximum clique.

Case 1. V, U V5 is a maximum clique. Then we obtain the following statements.
1. ki + ks > ks + kg + kg; hence, ky + ko + ks 2> ks + ks + ks
2. k1 > ks +kg and ke > ks; hence, ky + ko + ky > ka + ks + ks
3. ki + ko> ky+ ks + ke hence, ky + ko +ks > ka+ ks + ks

Let V, is a smallest set from V3, Vi, V5. Then there are internal disjoint path
from all vertices of V, to all vertices of V4 UV5,. That is, there is a complete minor

of order k; + k + k,. I'rom the three above statements ky + ko + ko > [@]

Case 2. VoLUV3UV3 is & maximum clique. Then we obtain the following statements.
1. by + kg + ke = ki + ks; hence, ko + ks + ks + kg = ky + ks

2 ky+ kst ke katkhs;kitkothkstke>ka+ks
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3. k22k4andk3+k62k1;henoe, k2+k3+k5+k32k1+k4

Similar to Case 1, let Vj, is a smallest set from V{,V,, V5. Then there are
internal disjoint path from all vertices of V, to all vertices of V, U V3 U V. That
is, there is a complete minor of order k; + k3 + ks + kp. From the three above

statements k + ks + ks + kp > [222],

Case 3. VzUV,UV; is a maximum clique. Then we obtain the following statements.
1. ks +ka+ ke > ky+ ko, hence, ks + ks + ks + ke > by + ko
2. ks + kg + ke > ky + ks; hence, kg + ks + ks + ke > k1 + ks
3. ks > kg and ky > ko; hence, ks + ky + ks + ks > k1 + ko

Similar to Case 1 and 2, let V, is a smallest set from Vi, V5, V5. Then there are
internal disjoint path from all vertices of V. to all vertices of V3 UV, U V5. That
is, there is a complete minor of order ks + k4 + kg + k.. From the three above

statements k3 + k4 + ks + ko > rnt—fﬂ'l O
Theorem 5.6. The four graphs from Figure 5.1 satisfy Hadwiger's conjecture.

Proof. Let G be a graph in the Figure 5.1 and the vertices of G be labelled as
indicated. Let G’ be an inflation of G where each vertex v; has been inflated to a
k;-clique on a vertex set V; for all .

If x(G") = w(@), then it is obvious that G| has a minor of order x(G"); hence,
G’ satisfies Hadwiger’s conjecture. Suppose that x(G') > w(G').
Case 1. G is Gy or Gy. If G is G, then we assume that ks < k5. Then G — V; is

H,. By Lemma 5.13, H] has a complete minor of order [%]
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[n(Hi) + kﬁ'l - |'n(6'“J - Vi’) + kﬁ"l
2 2
@)+ ke — K

If k» > ko + ks, then H] has a complete minor of order [3‘5’——17@] =

BlE irhoke] > [2E)k2] Hence, G — V4 has a complete minor of order x(G').
2 2

That is, G’ has a complete minor of order x{G").

Case 2. G is Gy or G,. If G is G4, then we assume that kr < ko, ks. Then G — V5

is Hy. By Lemma 5.14, H) has a complete minor of order [”(‘;‘r&)] = [“(G%‘kﬂ.

By Theorem 5.3 and by Theorem 5.4, x(G') = 1@51"—7 unless G is Gy and

ks + ky + ke + 2k7 = ky + ko + ks.
Suppose that G' = G and ks + kg + ke + 2k > k1 + k2 + ks. By Theorem 5.4,

G + kg + ky + kg
(GBS ke Fut iy
Ky == Ko+ ks + Ky + 2ks + 2k + 2Ky
< 3 ]
< |.k3 + ki kg -+ 2k ke +2k; + 2}"| o 2}'1.'{}_'
. 3

=ks+kys+ke+ kb

Case 2.1 k; > k;. There are k; internal disjoint path from all vertices of V; to all
vertices of V3UV;U V5. Hence, there is s complete minor of order ks + k4 + ks + k7.
Case 2.2 k; € ky and k; > k4. There are internal disjoint path from all vertices
of V; to all vertices of Vo U V3 U V5. That is, there is a complete minor of order
ko + ks + ks + ke = k3 + kg + ks + k7 because of ky > k.

Case 2.2 ky < ky and ky < ky. If V UV5 U V5 is a maximum clique of G, then
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x(GY) < k1 + ko + ks + ks by Corollary 5.12. If VaUVy UV is a maximum clique
of G}, then x(G}) < ky + ks + kg + kg. Since ky < ko, kg, ks, k7. There are internal
disjoint path from all vertices of V] to all vertices of VU Va U V. Therefore, there
is a complete minor of order k; + k» + k3 + kg. Similarly, there is a complete minor

of order ky + ks + kg + ks. O
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