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Chapter 1 

 

Introduction 

 

1.1 Background  

 

        Artificial intelligence (AI) involves the development of advanced computer 

software capable of emulating human cognitive functions such as learning, adaptation, 

reasoning, problem-solving, and decision-making (Zhang & Lu, 2021). It enables the 

execution of complex tasks traditionally performed by humans and leads to increased 

efficiency and productivity in some domains (Russell & Norvig, 2016). AI adoption, for 

better or worse, promises changes in industries such as health care, education, 

entertainment, agriculture, transportation, and more (Anaya-Isaza, Mera-Jiménez, & 

Zequera-Diaz, 2021; Guha et al., 2021; Guzman & Lewis, 2020; Jaiswal, 2023; Meskó 

& Görög, 2020; Nti, Adekoya, Weyori, & Nyarko-Boateng, 2022; Sing, Teo, Huang, 

Chiu, & Xing, 2022). In recent years, Deep Learning (DL), a subset of AI that employs 

multi-layered artificial neural networks (ANNs) to learn and extract meaningful 

information from data, has been crucial in advancing the field, facilitating significant 

breakthroughs in applications such as image recognition, natural language processing, 

and object classification (Sharifan & Amini, 2023). Some of its most prominent 

techniques include convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), long short-term memory (LSTM) networks, and generative adversarial 

networks (GANs).  

 

        Using medical data in the healthcare sector has enhanced medical services and 

public health (Zhou, Greenspan, & Shen, 2023). Examples of medical data include 

health records, imaging, genomic, biometric, and clinical trial data (Albahra et al., 

2023). Acquiring medical imaging involves using sophisticated image-capturing 

techniques and technologies to construct visualizations of what is beneath the skin for 

medical purposes (Albahra et al., 2023). These technologies provide tremendously 
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valuable insights to physicians about the patient’s health.  Some of the most common 

technologies employed in medical imaging include X-ray, Magnetic Resonance 

Imaging (MRI), Computed Tomography (CT), fundus, and Ultrasound (Goceri, 2023). 

A commonly used algorithm in deep learning for image data is the convolutional neural 

networks (CNNs). It is made up of multiple convolutions and pooling layers, with a 

fully connected layer at last. It is used for tasks such as object detection, recognition, 

and segmentation (Deng et al., 2009; LeCun, Bottou, Bengio, & Haffner, 1998). 

 

        In medicine, deep learning algorithms are being extensively researched and 

developed for potential use. Their ability to interpret structured and unstructured data, 

identify complex patterns, and continually learn to enhance their output makes them 

powerful tools for medical purposes. These include enhancing diagnostic accuracy, 

detecting illnesses and abnormalities, tailoring treatment plans, monitoring healthiness, 

and anonymizing data (Diaz et al., 2021; Tang, 2019; Kermany et al., 2018). Moreover, 

their immediate analysis of new data after training makes them especially helpful for 

cases where time for diagnosis and treatment is limited (Ostrom et al., 2019; Shaver et 

al., 2019). A demonstrative example is where deep learning algorithms are deployed in 

the analysis of brain tumors, such as gliomas, utilizing Magnetic Resonance Imaging 

(MRI). However, the development of deep learning algorithms is slowed by several 

constraints, one of which is the availability of adequate training datasets. An ideal 

dataset is labeled, diverse, bias-free, high in quality, collected ethically, and large in 

size. This type of dataset, when used, produces a generalized trained model that 

performs well on new, unseen-before data. Nonetheless, collecting and preparing such 

a dataset is a challenging task (Anaya-Isaza et al., 2021; Perone & Cohen-Adad, 2019). 

 

       Geometric and synthetic data augmentation are two approaches to tackling the 

challenge of insufficient data availability for deep learning training (Dang, Vo, Ngo, & 

Ha, 2022; Shorten and Khoshgoftaar, 2019). The first involves altering the images used 

for training using geometric transformations such as translation, rotation, zooming, and 

shear. Theoretically, this would increase the model’s generalization due to increased 

unique image pixel arrangements. In tasks such as segmentation, top-performing 

participants in competitions like the Multimodal Brain Tumor Segmentation Challenge 
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have utilized techniques like affine, pixel-level, and elastic deformations to enhance 

segmentation accuracy (Isense, Kickingereder, Wick, Bendszus, & Maier-Hein, 2019; 

McKinley, Meier, & Wiest, 2019; Myronenko, 2019; Nalepa et al., 2019). On the other 

hand, synthetic data augmentation focuses on generating entirely new artificial images 

rather than modifying existing ones. These synthetic images are then added to the 

training set. This method offers the potential for a more diverse set of augmented images 

compared to traditional geometric transformations (Basaran, Qiao, Matthews, & Bai, 

2022; Shin et al., 2018; Zhang et al., 2023). However, the effectiveness of synthetic data 

augmentation relies on factors such as the method of synthetic image generation and 

how the synthetic data is managed and integrated into the training process (Carver, Dai, 

Liang, Snyder, & Wen, 2021; Cha et al., 2020; Foroozandeh & Eklund, 2020; Larsson, 

Akbar, & Eklund, 2022). While both methods have their advantages and limitations, it 

is not uncommon for researchers to integrate them as they can complement one another 

(McKinley et al., 2019).  

 

        Generative adversarial networks (GANs) consist of two CNNs, the generator and 

the discriminator (Goodfellow et al., 2014; Skandarani, Jodoin, & Lalande, 2023; Yi, 

Walia, & Babyn, 2019). These networks compete with one another with the overall 

purpose of generating realistic synthetic images that resembles the distribution of real 

images. The generator aims to produce synthetic data that can’t be recognized as such, 

while the discriminator tries to differentiate between real and synthetic images (LeCun 

et al., 1998). The presumption is that synthetic images could be employed to augment 

the training set if they are indistinguishable from real images(Kora Venu & Ravula, 

2020; Sandfort, Yan, Pickhardt, & Summers, 2019). 

 

        The process of assessing generated synthetic data to determine their authenticity, 

which indicates their usefulness, can be done through a visual Turing test (VTT) 

(Chuquicusma, Hussein, Burt, & Bagci, 2018) or by employing quantitative evaluation 

metrics. In the first approach, experts individually examine and rate synthetic samples 

as either real or fake. This method is expensive and prone to bias errors when done by 

a single evaluator. Therefore, it is recommended that multiple raters be employed 

(Chuquicusma et al., 2018; Salimans et al., 2016). Nonetheless, this would be time-
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consuming and expensive. On the other hand, several evaluation metrics, such as 

Inception Score (IS) and Precision and Recall (P and R) have been suggested and widely 

used as an alternative, cost-effective generated synthetic data evaluation approach 

(Salimans et al., 2016). Among them, the Fréchet Inception Distance (FID) is considered 

by many to be the most prominent one (Karras et al., 2020). FID utilizes the Inception 

V3 image classification network trained on the ImageNet dataset to encode images into 

2048-element vector embeddings (Heusel, Ramsauer, Unterthiner, Nessler, & 

Hochreiter, 2017). This process is carried out for both real and generated synthetic data 

groups. Then, it evaluates the distance between the distributions of the two groups and 

produces a scalar score. A lower score suggests a shorter distance, indicating that the 

two groups are similar. 

 

        In this research, GAN architectures and their application in generating synthetic 

images across multiple medical image types were thoroughly examined. The 

performance of these GANs was evaluated using state-of-the-art metrics, and the 

influence of dataset size on these metrics was explored. Additionally, the process of 

vector embedding generation was investigated, and an augmentation and segmentation 

pipeline was proposed. Lastly, the impact of geometric and synthetic image 

augmentation on deep learning performance was assessed. 

 

1.2 Research Objective 

 

        The aim of this study is to: 

1.2.1 Employ state-of-the-art deep learning algorithms to generate realistic 

synthetic medical images. 

1.2.2 Evaluate the generation performance using state-of-the-art evaluation 

metrics. 

1.2.3 Investigate the impact of hyperparameters on the evaluation process. 

1.2.4 Gain insights into the efficacy of geometric and synthetic data augmentation 

techniques for enhancing deep learning model training. 
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1.3 Research Questions 

 

        By the end of this study, we aim to answer the following questions: 

        1.3.1 Can Generative Adversarial Networks (GANs) effectively generate real-

looking synthetic medical images? 

        1.3.2 Will the generated synthetic images be correctly identified by quantitative 

evaluation metrics? 

        1.3.3 What impact, if any, does the size of datasets containing real and synthetic 

images have on the performance of quantitative evaluation metrics? 

        1.3.4 Does utilizing pre-trained weights as opposed to randomly initialized weights 

for the Inception v3 model affect the computation of FID? 

        1.3.5 To what extent does utilizing exclusively synthetic images for augmentation 

affect the training of a deep learning segmentation model? 

        1.3.6 How does incorporating geometric augmentation techniques, in addition to 

synthetic images, influence the training of a deep learning segmentation model? 

        1.3.7 Does the performance of the augmented deep learning model justify the 

GAN’s training cost? 
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1.4 Research Framework 

 

 

 

Figure 1.1 Research Conceptual Framework 

Source: Researcher, 2024 

 



 

Chapter 2 

 

Literature Review 

 

2.1 Artificial Intelligence 

 

        Artificial intelligence (AI) refers to computer software that aims to replicate 

human intelligence (Zhang & Lu, 2021). This type of software is considered intelligent 

due to its ability to learn, reason, and draw conclusions autonomously from given data 

(Russell & Norvig, 2016). Effectively, it is deemed intelligent when its output passes 

the Turing test (Gonçalves, 2023). Recently, AI systems have seen a significant increase 

in usage, driven by improvements in AI algorithm design, data availability, and 

advancements in computational power manufacturing in conjunction with their 

affordability (Mondal, 2020). AI is expected to transform several sectors in the near 

future, including education, health care, finance, manufacturing, retail, communication, 

entertainment, and more (Guha et al., 2021; Guzman et al., 2020; Jaiswal, 2023; Meskó 

& Görög; Nti et al., 2022; Sing et al., 2022). On the other hand, machine learning (ML) 

is a subset of AI that involves the creation of software that leverages data and algorithms 

in order to learn and adapt to achieve a desired outcome without explicit human 

intervention (Zhang & Lu, 2021). Multiple ML techniques exist, including supervised, 

unsupervised, reinforcement, and deep learning (Morales & Escalante, 2022; Sharifani 

& Amini, 2023). The latter differs in complexity, training data requirements, and 

application. Generally, deep learning models employ a typical neural network with 

depth in layers. A typical neural network consists of three layers: input, output and 

hidden layer. Any more than one hidden layer is considered a deep learning algorithm. 

The depth of the deep learning algorithm facilitates its ability to perform complex 

computations to identify sophisticated patterns (Aggarwal, 2018). Deep learning 

algorithms are power extensive and require large training sets, typically leading to 

significant training time. On the other hand, deep learning networks require less human 

intervention. 
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2.2 Deep Learning in Medicine 

 

        Medical images are paramount in the health sector. Physicians and radiologists 

utilize them to observe soft and hard tissues in the patient’s body for screening, 

diagnostic, treatment planning, and monitoring purposes. Throughout the years, 

different medical image collection techniques were invented, each for a specific 

purpose, and some complement each other. Some of the prevalent types of medical 

images include X-rays, computed tomography (CT) scans, magnetic resonance imaging 

(MRI), positron emission tomography (PET), eye fundus, and ultrasound (Mallappallil, 

Sabu, Gruessner, & Salifu, 2020). Deep learning algorithms have successfully aided the 

medical field in several applications (Diaz et al., 2021; Tang, 2019). Convolutional 

neural networks (CNNs) are a class of deep learning inspired by the principles of 

operation of the human’s visual cortex. Some CNNs achieved unprecedented results in 

tasks like segmentation and classification (Brock, Donahue, & Simonyan, 2018; LeCun 

et al., 1998). However, the application of CNNs and deep learning models remains 

limited to several constraints. These include the lack of high-quality data, the high cost 

of labeling, distribution imbalances, potential bias, data collection privacy concerns, and 

inconsistency in formatting and collection protocols (Alowais et al., 2023; Chen, Lu, 

Chen, Williamson, & Mahmood, 2021; Piccialli, Di Somma, Giampaolo, Cuomo, & 

Fortino, 2021; Price & Nicholson, 2019).  

 

2.3 Generative adversarial networks 

 

        Generative adversarial neural networks (GANs) are one of the most prominent 

potential solutions for data scarcity (Chen et al., 2021; Dash, Ye, & Wang, 2024). Ever 

since their development by (Goodfellow et al., 2014), several architectures have been 

developed with the aim of generating synthetic images that cannot be distinguished as 

such (Yi et al., 2019). The possibility of generating synthetic data that can pass the 

Turing and computational tests would provide a viable solution to the data scarcity 

problem (Kora Venu & Ravula, 2020; Sandfort et al., 2019). (Frid-Adar, Klang, Amitai, 

Goldberger, & Greenspan, 2018) employed deep convolutional generative adversarial 
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networks to generate synthetic liver lesions. They reported enhancement in their 

classification model performance after training with the augmented training set. 

(Chuquicusma et al., 2018) The same GAN architecture was used to produce lung cancer 

nodules and put them to a Turing test. The radiologist concluded that the generated 

synthetic data were realistic. Another group of researchers experimented with multiple 

GAN architectures in 2018, including DCGAN, LAPGAN, and PGGAN. The latter 

generated the most accurate resemblance to the real images (Baur, Albarqouni, & 

Navab, 2018). The PGGAN was also used by (Korkinof et al., 2018) to generate high-

resolution mammograms. And in 2021, a group of researchers also used PGGAN to 

generate synthetic CT scans. Consequently, the synthetic data in a VTT team comprising 

14 trained radiologists. The study showed promising results, with some reservations 

regarding the anatomical precision of some generated synthetic scans.   GANs have also 

been utilized to overcome privacy-related concerns (Eilertsen, Tsirikoglou, Lundström, 

& Unger, 2021; Subramaniam et al., 2022). StyleGAN was trained on CT and MR 

images from patients with pelvic malignancies and achieved promising results, 

demonstrating effective manipulation of image features and accurate prediction of 

longitudinal slice positions (Fetty et al., 2020). And in a more recent work, (Hong et al., 

2021) employed StyleGAN2 to generate three-dimensional brain MRI images, aiming 

to address the limitations of current Generative Adversarial Network (GAN) 

technologies for 3D medical image synthesis.  

 

2.4 Evaluation of Generative Adversarial Networks 

 

        Evaluating synthetic images is done through subjective and objective analysis 

methods. The visual Turing test is considered the best evaluation metric for synthetic 

images (Chuquicusma et al., 2018). It involves rating each image individually as real or 

fake by an expert in the field. This could be a radiologist, physician, or an Artificial 

intelligence and image processing expert. However, humans are influenced by natural 

inherent bias and vary in experience. This perhaps causes different opinions on image 

authenticity to be reached. One approach to overcome this subjectivity is employing 

multiple experts for the evaluation process and declaring the decision on authenticity 

based on the majority consensus. However, this approach could be unfeasible for its 
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high cost. Nevertheless, some studies have indeed employed multiple experts to evaluate 

synthetic data. Others employed single rater for evaluation. In both cases, rating 

parameters vary in terms of the number of images shown at once, time per image, 

environment settings, and specific requests given to raters (Dash et al., 2024). (Denton, 

Chintala, & Fergus, 2015) synthesized and presented CIFAR-10-type natural images to 

15 raters to evaluate their authenticity. Synthetic images were mistakenly classified as 

real images around 40% of the time. (Salimans et al., 2016) followed a different 

approach by presenting nine images to a group of raters. They were instructed to identify 

synthetic images out of the group with no time limitation. By the end of each round, the 

raters were given feedback, which helped improve their ability to distinguish artificial 

images. 52.4% of MNIST-type images and 78.7% of CIFAR-10-type images were 

correctly classified from batches with an equal number of real and synthetic images. 

However, the percentage of artificial images that were mistakenly classified as genuine 

was not reported. (Chuquicusma et al., 2018) studied their synthetic lung nodule images 

by presenting two radiologists with 36 batches of all synthetic or half synthetic half real 

images, in an overall ratio of 3:1 to synthetic data. The radiologists were asked to 

identify any images that appeared to be artificial. The mean overall accuracy was 

46.25%. (Park et al., 2021) conducted similar research; however, the data was presented 

to ten radiologists with no time limitation and feedback. Moreover, the batch of images 

consisted of 300 real and synthetic images divided evenly. The radiologists' mean 

overall accuracy was found to be 59.4% and the experience of the radiologists was found 

irrelevant. 

 

        A cost-effective alternative to VTT is Inception score (IS) (Salimans et al., 2016) 

and Fréchet Inception distance (Heusel et al., 2017). IS measures the diversity and 

fidelity of synthetic data, while FID measures the similarity between real and synthetic 

data (Asadi & O’Reilly, 2021; Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016). Both 

algorithms rely on a pre-trained Inception v3 model for feature extraction to analyze the 

distribution of synthetic against real data. However, it has been suggested that relying 

on these pre-trained weights might not be ideal for evaluating certain types of images, 

such as medical images, especially when these types of images were not included in the 

training dataset. This is because the model might have learned biases or features specific 
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to the types of images it was trained on. However, it is worth mentioning that the authors 

used MNIST and voice spectrograms with their work, which are fairly simple types of 

images when compared to everyday color images or medical images. They also 

employed their own novel density and coverage metrics. Another indirect way to 

measure GAN's performance is to use the generated synthetic images to train a deep 

learning model. If the synthetic images are of high in quality and very similar to real 

images, the performance of the deep learning model would improve.  (Yu, Zhou, Wang, 

Fripp, & Bourgeat, 2018)  generated T2 flair images using conditional GAN and then 

used generated images to train a segmentation model to segment brain tumors.  

(Hamghalam, Wang, & Lei, 2020)  performed comparable work but using different 

GAN architectures, CycleGAN and cGAN. They reported improved pixel-wise 

segmentation performance observed in a 0.89 Dice coefficient score. (Carver et al., 

2021) extended this idea by training GANs to generate different types of brain MR 

images along with manually adjusted tumor segmentation masks. They then utilized 

these synthetic images and masks to augment the training dataset for a U-nets model. 

They reported an improvement in the Dice coefficient by 4.8%, which indicated the 

efficacy of this approach in enhancing segmentation performance. However, the 

introduction of the human element in preparing the masks makes this approach 

challenging to implement, especially when the training set is augmented with a large 

number of synthetic images (Chlap et al., 2021; Dash et al., 2024).  

 

2.5 Augmentation for Brain Tumor Segmentation 

 

        There are two primary types of data augmentation techniques for brain tumor 

segmentation. The first type involves transforming original data, which can be 

categorized into affine, elastic, and pixel-level transformations. Affine transformations 

refer to geometric changes such as rotation, zooming, cropping, flipping, or translations 

applied to the training data. However, (Shin et al., 2018) suggested that its effectiveness 

in enhancing the generalization of deep learning models may be limited due to the 

generation of highly similar or correlated images. Conversely, elastic transformations 

involve diffeomorphic mappings, preserving brain shape integrity and resulting in 
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natural-looking changes. This method has shown promise, particularly when combined 

with affine transformations. Additionally, in pixel-level augmentation, the 

transformations occur at the pixel level, including manipulating pixel intensity values, 

shifting and scaling of pixel-intensity values, gamma correction, sharpening, and 

blurring. The second type of data augmentation involves the generation and then 

utilization of synthetic data (Nalepa, Marcinkiewicz, & Kawulok, 2019).  

         

        Geometric augmentations played a significant role in the BraTS2018 tumor 

segmentation challenge. The top-performing algorithms used a mix of affine, pixel-

level, and elastic deformation transformations to augment their training data (Isensee et 

al., 2019; McKinley et al., 2019; Myronenko, 2019). However, it was reported that 

applying these traditional augmentation techniques causes limited diversity within the 

training set (Basaran et al., 2022; Shin et al., 2018; Zhang et al., 2023). 

 

        Synthetic data augmentation is currently a subject of extensive research. 

Differences in implementation details may result in varying outcomes (Carver et al., 

2021; Foroozandeh & Eklund, 2020; Larsson et al., 2022). (Cha et al., 2020) developed 

a breast mass detection algorithm for mammography using a deep-learning neural 

network. He used both real and synthetic images generated by GAN for training. His 

findings suggest that the algorithm's performance improves based on the number of real 

and synthetic images used for training. Simply increasing the amount of synthetic data 

does not guarantee better performance. (Shin et al., 2018) employed a GAN to generate 

synthetic images to train a brain segmentation model. They explored how different 

combinations of real and synthetic data affected the model’s performance and revealed 

that incorporating synthetic images alongside real data enhances the model's 

performance. However, they found that adding geometric augmentations did not further 

improve the model's performance. Furthermore, (Eilertsen et al., 2021) investigated the 

impact of ensembled GANs to generate synthetic data for deep-learning models in an 

effort to overcome the problem of lack of diversity in the synthetic images when 

generated from a single GAN. They provided evidence supporting using ensembles of 

independently trained GANs for generating synthetic training data, particularly 

beneficial for anonymization.  



 

Chapter 3 

 

Research Methodology 

 

        Within this research, multiple studies were carried out to investigate synthetic data 

generation, quality evaluation, and utilization in deep learning training for medical 

purposes. In the initial study, 512x512 synthetic CT images of the chest were generated 

using progressively growing generative adversarial networks (PGGAN). The quality of 

the images was then measured using various quantitative evaluation metrics, including 

Fréchet Inception Distance (FID), Inception Score (IS), and Precision and Recall (P and 

R). Additionally, the impact of dataset size on the aforementioned metrics was explored. 

The FID metric, widely considered the most prominent synthetic data evaluation 

technique, relies on vector embeddings of real and synthetic images to produce a single 

score indicating their similarity level. The deep learning architecture responsible for 

producing those embeddings was investigated in the subsequent study. The final study 

replaced the PGGAN from the first study with StyleGAN2 with adaptive discriminator 

augmentation (ADA) to automatically generate fluid-attenuated inversion recovery 

(FLAIR) magnetic resonance images and corresponding glioma segmentation masks. 

The effectiveness of the generated synthetic images in training a deep learning 

algorithm, U-nets, was then evaluated using an augmentation and segmentation pipeline. 

An overall overview of this research is illustrated in Figure 3.1. Each study is 

represented in a unique color code and a number indicating its order.  

 

3.1 Preliminary Synthetic Data Generation 

 

        In the first study of this research, the PGGAN architecture was utilized to generate 

high-resolution synthetic CT images of the thoracic region. Several quantitative 

evaluation metrics, including FID, IS, and P and R, were employed to assess the quality 

of the generated synthetic images. Furthermore, the influence of dataset size on the 

aforementioned evaluation metrics was assessed. 
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Figure 3.1 Research Overview 

Source: Researcher, 2024 

 

        3.1.1 Data Collection 

         

        The LCTSC public dataset containing a collection of 60 thoracic scans and 9,593 

images with a uniform resolution of 512x512 was acquired. The data were collected 

from 60 patients using CT, RT, and RTSTRUCT modalities. The images were then 

divided into training and validation sets, with 5,858 and 3,675 images in each set, 

respectively. To enhance the contrast between soft tissues, pixel values were clipped 

from −200 to 300 HU. Pixel values were then adjusted to fall within the range of 0 to 

255. Subsequently, the images were saved as Joint Photographic Experts Group (.JPEG) 

files. The final step involved normalizing images to ensure they fall within the range of 

[-1,1]. This was done before feeding the images into the discriminator network. 
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Figure 3.2 A Random CT Images from the LCTSC Dataset 

Source: Researcher, 2024 

 

        3.1.2 Generative Adversarial Networks 

         

        Generative Adversarial Networks (GAN) architecture mainly comprises a 

generator and a discriminator. The two deep-learning networks work against one 

another to produce synthetic images that are as similar as possible to real ones (Korkinof 

et al., 2018). In this setup, the generator takes a random noise vector (z) and constructs 

synthetic images, while the discriminator binary classifies a given input image into 

either a real or fake class. This could be a real image from the training set or a synthetic 

one produced by the generator. The adversarial operation between the two models 

facilitates the generator's improvement in its ability to generate realistic images over 

time. Equation 3-1 shows the minimax objective function (V) used to represent the 

generator (G) and the discriminator’s (D) maximum-minimum relationship. The 

function is split into two sections: The first shows the anticipated value of the logarithm 

of D(x), which happens when the input image is sampled from the real data distribution. 

The subsequent part indicates the anticipated value of the logarithm of D(G(z)), which 

happens when the input image is sampled from the generated data distribution. 

 

  
min

θG
 

max

θD
 V(D,G)= Ex~Pdata

[log D(x)]+ Ez~Pz(z)[ log (1-D(G(z)))]                            (3-1) 
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        As the discriminator and generator alternate training continues, their weights  𝜃𝐷 

and 𝜃𝐺  update to optimize their performances. An optimal training result is achieved 

when the discriminator classifies its input image as real or fake with 50% confidence. 

However, GAN’s convergence criterion is an active research topic. 

 

 

Figure 3.3 Generative Adversarial Networks (GAN) 

Source: Researcher, 2024 

 

        3.1.3 The Generative Model 

         

        The Progressively Growing Generative Adversarial Networks (PGGAN) 

architecture is known for its ability to generate reliable large synthetic images (Karras, 

Aila, Laine, & Lehtinen, 2017). It offers training stability as the size of the generated 

image increases with the model scaling up in several stages. The first image is generated 

in 4×4 resolution. As the generator and the discriminator double in scale, the output 

images scale up to 8x8 resolution. The process repeats until a maximum of 1024×1024 

images are generated (512×512 in this study). The rescaling process, which involves 

adding convolutional layers, causes training instability. This was mitigated by a 

parameter “alpha” and attaching two outputs from the previous block in parallel with 

the next block. The value of alpha (ranging from 0 to 1) would determine the strength 

of the connection between the blocks. An increase in Alpha value results in an increase 

in connection strength and vice-versa (Figure 3.4). 

 

        The authors proposed multiple techniques to enhance stability and contribute to 

generating high-quality images. In “MiniBatch SD” a feature map from the standard 
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deviation of spatial features in a mini-batch is constructed and included in the 

penultimate layer of the discriminator. In “Equalized Learning Rate,” the weights of 

each layer are initialized such that the variance of the outputs of that layer is 

approximately 1, as opposed to initiating the weights randomly across all layers. “Pixel-

wise normalization” is used to decrease the sensitivity to variations in pixel values 

(Karras et al., 2017; Salimans et al., 2016). 

 

 

Figure 3.4 Progressively Growing Generative Adversarial Networks (PGGAN) 

Source: Researcher, 2024 

 

        During training, the model gradually increases image size, and batch sizes adapt in 

accordance with the size of the image. For example, when images are 4×4, a batch size 

would be 64, whereas when images scale up to 512×512, the batch size changes to 4. 

This approach helps prevent overloading our computational resources and optimize the 

training process. Training employed the Wasserstein GAN gradient penalty loss 

(WGAN-GP), which is a widely used technique for stabilizing the training of GANs. 

Adam optimizer was utilized with set initial learning rate of 0.001, and the β1 and β2 

values of 0 and 0.99 (Gulrajani, Ahmed, Arjovsky, Dumoulin, & Courville, 2017). 

 

        3.1.4 Evaluation 

 

        The loss curves of the generator and discriminator during the learning process 

indicate the stability of the GAN during training. However, they could not be used to 
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acquire details regarding the similarity level between the generated synthetic and real 

images. To that end, other metrics are employed for this purpose. They vary in concepts 

and areas of investigation. Human evaluation through a visual Turing test (VTT) is 

widely regarded as the gold standard. However, it can be expensive due to the manual 

evaluation of images and the need for expert evaluators. As a result, researchers are 

exploring various quantitative techniques to address this challenge (Salehi, Chalechale, 

& Taghizadeh, 2020). Four metrics were tested to evaluate realism, which included 

Fréchet Inception distance (FID), Inception score (IS), precision (P), and recall (R). 

 

                3.1.4.1 Fréchet Inception Distance  

                The FID is commonly used to assess the authenticity of generated synthetic 

images (Heusel et al., 2017). It measures the level of similarity between input images 

by comparing the disparity between their vector embeddings (g) and real image vector 

embeddings (x). These embeddings are obtained from the second to last layer 

(penultimate) of the Inception v3 model or a similar pre-trained deep neural network. A 

decrease in the FID value indicates a reduction in the disparity between two sets of 

images, suggesting a high level of similarity between them (LeCun et al., 1998). 

Equation 3-2 computes the disparity between vector embeddings. In it, 𝜇𝑥 and 𝜇𝑔 

represent the mean values of features extracted from real and generated images, 

respectively. ∑ 𝑥 and ∑ 𝑔 are covariance matrices derived x and g, Tr denotes the trace 

operator, which sums diagonal elements of matrices, and the ‖_‖ represents the 

Euclidean distance. 

 

FID (x,g)= ‖μ
x
-μ

g
‖

2

2

+Tr( ∑ x + ∑ g -2( ∑ x ∑ g )
1

2)                                                  (3-2) 
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Figure 3.5 Fréchet Inception Distance 

Source: Researcher, 2024 

 

                3.5 Inception Score (IS) 

                The IS is another algorithm frequently employed to evaluate synthetic images. 

It utilizes the pre-trained Inception v3, similar to FID, to compute the marginal class 

distribution P(y) and the conditional class distribution P(y|x). In Figure 3.6, the P(y) 

represents the distribution of classes in the dataset. In a best-case scenario, P(y) would 

be a uniform distribution where each class is equally represented. Meanwhile, P(y∣x) 

represents how likely a generated image belongs to a certain class. In a best-case 

scenario, a high probability is assigned to the correct class for each image, indicating 

high confidence in the classification. The Kullback-Leibler divergence (𝐷𝐾𝐿) is then 

calculated to measure the quality through P(y|x) and the diversity through P(y) for the 

synthetic images (g). The term 'quality' denotes the general visual fidelity of the images, 

whereas ‘diversity’ refers to their variability. When both are high, a high scalar value 

(score) is outputted, indicating a high similarity between synthetic and real images and 

vice versa (Salimans et al., 2016). In Equation 3-3, 𝐸𝑥 denotes the expected value of 

𝐷𝐾𝐿 between P(y) and P(y|x). 

 

IS (g)= exp (Ex~pDKL(p(y|x)||(p(y)))                                                                        (3-3) 
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Figure 3.6 Marginal P(y) and Conditional P(y|x) Class Distributions 

Source: Researcher, 2024 

 

                3.1.4.3 Precision and Recall  

                Commonly used in classification tasks, P and R can be employed to assess the 

performance of GANs (Kynkäänniemi, Karras, Laine, Lehtinen, & Aila, 2019). P is a 

measure of how closely synthetic images resemble real ones. It is calculated by dividing 

the number of generated synthetic images that fall within the real images manifold by 

the total number of generated images. R is a measure of the diversity of generated 

synthetic images compared to the real images. It calculates how many real images are 

found within the generated images’ manifold in relation to the total number of real 

images (Figure 3.7). 
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Figure 3.7 Precision and Recall Manifolds: Real (green) – Generated (pink) 

Source: Researcher, 2024 

 

                Image vector embeddings are first computed from a pre-trained CNN VGG16 

model. Both real and generated image vector embeddings are then used to estimate 

manifolds using a k-nearest neighbors (k-NN) classifier with k set to 3 (Kynkäänniemi 

et al., 2019). The manifolds are constructed by computing Euclidean distances between 

feature vectors and creating hyperspheres with a radius equal to the distances to the kth 

nearest neighbors. The manifolds resulting from this process are volumes formed by the 

estimated hyperspheres. Equations 3-4 and 3-5 are used to calculate precision and recall, 

respectively. ∅𝑟 and ∅𝑔 represent the feature vector of real images and generated 

images, respectively. 𝛷𝑟 and 𝛷𝑔 represents a set of real and generated images feature 

vectors, respectively. 𝑓(∅, 𝛷) is calculated from Equation 3-6, where 𝑁𝑁𝑘(∅′, 𝛷) 

returns kth nearest feature vector ∅′ from  

the set 𝛷. 

 

Precision (Φr,Φg)= 
1

|Фg|
∑ ∅g∈Φg f(∅g,Φr)                                                                (3-4) 

Recall (Φr,Φg)= 
1

|Фr|
∑ ∅r∈Φr f(∅r,Φg)                                                                      (3-5) 

 

f(∅,Φ)= {
1, if ‖∅-∅'‖2≤‖∅'-NNk(∅',Φ)‖

2

0, otherwise
                                                                (3-6) 
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3.2 The Inception v3 Weights Initialization 

         

        Two common methods of weight initializing in deep learning architectures include 

utilizing pre-trained weights and random weights. Pre-trained weights involve using 

weights learned from training on a different dataset, while random weights involve using 

random values according to a distribution such as uniform or normal distributions. Some 

researchers suggest that randomly initializing the weight values could help alleviate any 

biases that might exist in the training set, unlike pre-trained weights (Naeem, Oh, Uh, 

Choi, & Yoo, 2020). This has motivated this study to evaluate the reliability of pre-

trained (trained on the ImageNet Large Scale Visual Image Recognition Challenge) 

versus random weights Inception v3 architecture when computing the FID score to 

assess the quality of generated synthetic images. 

         

        The impact of noise on the FID score was investigated. A baseline was established 

by computing the FID between two matching datasets of X-ray images with no 

variation. Then, the dataset was divided into two halves and the images in each half 

were compared with different distortion levels applied. This was done using both pre-

trained and random weight initializing models. Comparing the halves of the dataset 

allowed for a more subtle assessment of the FID metric's performance when there is a 

similarity but not a complete match between the images, simulating synthetic images 

compared to real images. Additionally, both models were used to compute the FID score 

between different types of images (X-ray, CT, Fundus, and dog). Finally, the 

embeddings extracted by both models were visualized (Heusel et al., 2017).  

 

        3.2.1 Data Collection 

 

        A total of one hundred images were collected, including chest X-ray, computed 

tomography (CT) scans of the thoracic region, color fundus photographs, and golden 

retriever (dog) images (Kermany et al., 2018; Khosla, Jayadevaprakash, Yao, & Li, 

2011; Porwal et al., 2018; Yang et al., 2018). Using bicubic interpolation, the images 

were resized to a standard size of 299x299 RGB pixels and then saved in unsigned 8-bit 
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integer Joint Photographic Experts Group format. All images were scaled in a range of 

[−1, 1] to prepare them for the Inception model. 

 

Figure 3.8 Study 2 - Datasets 

Source: Researcher, 2024 

 

        3.2.2 Image Distortions 

 

        Initially, a dataset of 100 unaltered (level 0 distortion) X-ray images was selected. 

The same dataset was then split into a 1:1 scheme, and different levels of distortion were 

introduced to one of the two halves incrementally, starting from 1 to 3 as illustrated in 

Figure 3.9. The FID score was computed to assess how different levels of distortion 

affect the similarity level between the unaltered and distorted halves reported by FID. 

Distortions used include: 

 

               3.2.2.1 Gaussian Noise 

               Each image was subjected to a random noise with a mean of zero. The source 

of the noise was a Gaussian distribution, and the level of distortion was controlled by 
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adjusting the standard deviation of the noise distribution. Specifically, the standard 

deviation was set to 10, 20, and 40.  

 

                3.2.2.2 Blur 

                Average filter kernels of varying sizes were applied to blur the images to 

different degrees. Specifically, kernels of sizes 5, 9, and 15. 

 

                3.2.2.3 Swirl 

                Swirl transformations with a radius of 200 pixels and varying strengths of 2, 

4, and 6 were applied to achieve swirl distortion.  

 

                3.2.2.4 Impulse Noise 

                Impulse distortion was applied by randomly converting a certain percentage 

of pixels to black or white. Specifically, 2%, 10%, or 20% of pixels were converted. 

 

Figure 3.9 Study 2 - Distortions 

Researcher: Asadi, 2024 
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        3.2.3 Fréchet Inception Distance  

         

        Similar to 3.1.4.1 from the previous study, the FID metric was employed in this 

study (Heusel et al., 2017). Figure 3.8 illustrates the types of image sets employed in 

this study. The Inception v3 model is an image recognition algorithm that could also be 

employed for feature vector extraction (Szegedy et al., 2016). In this study, it was 

initialized with pre-trained weights derived from the ImageNet dataset and random 

weights.  

 

        3.2.4 Dimensionality Reduction 

 

        Visualizing data helps in comprehending the fundamental structure of the data and 

identifying any existing patterns. To visualize the feature vectors extracted from both 

real and generated synthetic images, the 2048-dimensional vectors needed to be 

transformed into a 2-dimensional representation. To achieve this, t-SNE (t-distributed 

Stochastic Neighbor Embedding) was utilized.    

  

        t-SNE is a nonlinear technique that emphasizes the preservation of local similarities 

between data points. It maps high-dimensional data to a lower-dimensional space by 

minimizing the difference between their probability distributions according to the 

Kullback-Leibler divergence, it aims to retain the relative distances between data points 

(Van der Maaten & Hinton, 2008).  

 

3.3 Synthetic Data Generation and Integration for Deep-learning 

Training 

 

        During the final study of this research, the GAN architecture employed in the first 

study was replaced with a more advanced, state-of-the-art GAN model: StyleGAN2, 

with adaptive discriminator augmentation (ADA) to generate synthetic fluid-attenuated 

inversion recovery (FLAIR) magnetic resonance images and corresponding glioma 

segmentation masks. 
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        An automated pipeline for a training set augmentation and then object 

segmentation was aimed to be established. Insights into the usefulness of the generated 

synthetic images, particularly for medical purposes, would be offered by the 

performance of the deep learning segmentation model (U-nets). Additionally, another 

way to assess the quality of the generated images alongside FID would be served as by 

it. To improve augmentation, established geometric augmentation techniques were 

combined with synthetic data to determine the most effective augmentation methods for 

automated applications using deep learning models. 

 

        3.3.1 Data 

 

        The Cancer Imaging Archive (TCIA) was the source of the dataset used in this 

study. It contains brain MR images of lower-grade glioma paired with manually 

annotated segmentation masks and genomic cluster data. However, the latter was 

abandoned in this study. The masks highlight abnormality regions in FLAIR (Fluid-

attenuated inversion recovery) sequences. In total, the dataset consists of 110 scans from 

various patients. A few patients do not have both MR sequences (T1 and T2), meanwhile 

all of them have complete FLAIR sequences (Buda, Saha, & Mazurowski, 2019; Clark 

et al., 2013). Images were preprocessed by loading and standardizing them, then 

clipping them within the range of [-2, 7], followed by normalization to the range [0, 

255]. From 8-bit FLAIR sequence images, 3,929 uniformly sized images, each 256×256 

pixels, were extracted. Masks were utilized to distinguish between pixels representing 

tumors (indicated by a value of 0) and those that did not, indicated by a value of 1. When 

tumor tissue was not detected in the initial scans, masks of equivalent size were created 

in a matrix where every element equals zero. These images were then organized 

sequentially based on their order in the scans to prevent potential data leakage. The first 

2,751 (70%) images were allocated for training, followed by 590 (15%) for validation, 

and the remaining 588 (15%) for testing. 
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Figure 3.10 Study 3 - Dataset 

Source: Researcher, 2024 

 

                3.3.1.1 Data Preprocessing for GAN 

                The training set was exclusively utilized to train the generation model in order 

to prevent any data leakage that could impact the performance of the segmentation 

model. The validation and test sets were kept separate from this. The GAN training set 

comprised three-channel images. Within these images, the FLAIR sequence was 

denoted in the green and blue channels, while the corresponding masks were present in 

the red channel. The objective was to generate synthetic labeled images and eliminate 

the laborious task of manually segmenting the tumors (Carver et al., 2021).  

 

                Subsequently, during the data augmentation for training the segmentation 

model, the three-channel GAN-generated images were divided into grayscale FLAIR 

images and mask images. The average of the green and blue channels was calculated to 

generate artificial FLAIR images, whereas the red channels were thresholded at >128 to 

derive binary segmentation masks. 
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Figure 3.11 GAN Prepared Dataset 

Source: Researcher, 2024 

 

                3.3.1.2 Data Preprocessing for Segmentation Model 

                The grayscale FLAIR images and binary segmentation masks were processed 

to ensure that their pixel values were normalized to fall within the range of [0, 1]. 

Additionally, these images were kept at a consistent size of 256x256 pixels. This 

standardization ensured that the images could be effectively analyzed and compared. 

 

Figure 3.12 U-nets Prepared Dataset 

Source: Researcher, 2024 
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        3.3.2 The Generative Model 

         

        StyleGAN2 is an innovative variation of Generative Adversarial Network (GAN) 

that has gained significant recognition for its ability to produce highly realistic images 

at high resolution. Its remarkable performance has contributed significantly to the 

development of synthetic image generation (Karras et al., 2020). Its generator network 

receives a randomly sampled latent vector (Z) from a Gaussian distribution as an input 

to a learned mapping network. The mapping network comprises eight fully connected 

layers. The output of this network is a mapped latent vector into a latent space, style 

vector W, of size 512 that controls the style of generated feature maps by the synthesis 

network. The synthesis network consists of multiple blocks, the number of which 

depends on the target resolution of the generated images. Each block consists of multiple 

components, with the overall objective being to progressively increase the resolution of 

the feature maps and refine the generated image. These include two convolutional layers 

for feature extraction, style modulation for fine-grained control over image features, 

noise Injection to create diverse and realistic images and prevent overfitting, up-

sampling to up-sample the feature maps to higher resolutions, skip connections to 

connect the output of a block to the input of the next block and avoid stage-transitioning 

artifacts, instance normalization (IN) to normalizes feature maps per instance and an 

activation function for linearity introduction (Karras et al., 2020). 

 

        The discriminator network comprises multiple convolution blocks matching the 

synthesis network and progressively reduces the resolution of the feature map by 

multiples of two. Each down-sampling step corresponds to a specific block in the 

discriminator. Close to the classification stage of the network, a mini-batch standard 

deviation layer is utilized. This layer computes the standard deviation for each feature 

map within a mini-batch. The resulting standard deviations are averaged and added as 

an extra feature to the feature maps. Finally, the last feature map is flattened and passed 

through a fully connected layer for classification.  

        

        StyleGAN2 requires a large training set to avoid overfitting the discriminator. This 

limits its applications due to data scarcity. However, (Karras et al. 2020) proposed a 
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solution, StyleGAN2-ada, which introduces adaptive discriminator augmentations. The 

objective of this method is to avoid the influence of training image augmentations on 

the generated images. To accomplish this, a series of stochastic discriminator 

augmentations is exclusively implemented on images before their introduction to the 

discriminator. This ensures that the discriminator is trained to distinguish between real 

and fake images using the same augmentations while the generator learns to generate 

images without such augmentations. 

 

        Furthermore, to enhance StyleGAN2-ada's performance, eighteen distinct image 

manipulations in a predefined order are applied with specific proportions to input 

images fed into the discriminator. Evidence shows that this does not compromise the 

quality of generated images. Heuristics are used to detect overfitting in the discriminator 

and automatically adjust the percentage augmentations applied during training (Karras 

et al., 2020; Situ, Teng, Liu, Luo, & Zhou, 2021; Asadi, Angsuwatanakul, & O’Reilly, 

2024). 

 

 

Figure 3.13 StyleGAN2, with Adaptive Discriminator Augmentation (ADA) 

Source: Researcher, 2024 
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We utilized a tailored data augmentation pipeline throughout the training phase, 

incorporating flipping, rotation, scaling, and color adjustments. Transfer learning was 

employed using a pre-trained network on FFHQ dataset images at a resolution of 256 ×

256. Batch size 32 was used, and the model was saved every three iterations, with 

snapshots of the generated images captured for visual evaluation. 

 

        3.3.3 Evaluation of the Generative Model 

 

        The effectiveness of the GAN was assessed using subjective and objective 

evaluation techniques. A total of 100 generated images were randomly inspected and 

their quality was analyzed in the subjective evaluation. Additionally, all generated data 

was thoroughly analyzed to identify any lower-quality images produced by the GAN. 

The Fréchet Inception Distance (FID) was used to assess the GAN's performance 

quantitatively (Heusel et al., 2017). The FID score provides a measure of how similar 

the generated images are to the real ones, with smaller FID scores indicating better 

performance by the GAN. The FID metric is based on the activations of an Inception 

V3 model trained on the ImageNet dataset (Szegedy et al., 2016). The activations are 

extracted from a pooling layer and are assumed to follow a multivariate normal 

distribution. The FID score is then computed as the distance between the means of the 

activations of the real and generated images minus the trace of the product of the 

covariance matrices of the real and generated images. 

 

       3.3.4 Segmentation Model 

 

        The U-net architecture is a deep-learning model commonly used for image 

segmentation. Created by (Ronneberger, Fischer, & Brox, 2015) in 2015, the model 

features four encoding blocks, each containing multiple convolutional layers, batch 

normalization, ReLU activation, and max pooling. The encoder feeds into a 

convolutional block with 1024 filters before transitioning to the decoder. The decoder 

has four blocks with convolutional transpose layers that double the spatial dimensions. 

The number of filters in the decoder matches that of the encoder, with 512, 256, 128, 

and 64 filters respectively. The final output is generated from a convolutional layer with 
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one filter and a sigmoid activation function. This architecture has been successful in 

various medical imaging applications and has been shown to be effective in performing 

automatic image segmentation tasks. 

 

 

Figure 3.14 Segmentation Model Architecture (U-nets) 

Source: Researcher, 2024 

 

        The U-nets first underwent fifteen rounds of training. It began with a real dataset 

for the initial round and then expanded the training set by 1,000 generated synthetic 

images with their corresponding glioma segmentation masks for each subsequent round. 

By the fifteenth round, 14,000 generated images were utilized along with their masks. 

Following this, the process was repeated, this time with the introduction of geometric 

augmentation techniques in addition to the synthetic data. Randomly applied geometric 

augmentations included horizontal and vertical flips, translations of up to 30% of the 

image size in both horizontal and vertical directions, shearing with a range of 0.2, 

zooming with a range of 0.2, and brightness adjustment with a range of values between 

0.5 and 1.05. Any new edge pixels were filled using the 'wrap' mode, which was also 

employed to populate newly added edge pixels. The validation set was used throughout 

the training process to track the model's progress by the end of training iterations. The 

model was set to stop training if no progress was made in the dice coefficient score. 
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        3.3.5 Evaluation of Segmentation Model 

         

        The computational costs of U-net training were analyzed by quantifying the total 

number of completed training iterations, total training time (in hours), and time per 

iteration (in minutes), which are reported in Tables 4.6 and 4.7. The evaluation metrics 

used at the end of each training iteration included intersection over union, precision, 

recall, and the Dice coefficient. However, the Dice coefficient was primarily used to 

evaluate segmentations, where a higher value indicated segmentations with a high level 

of accuracy. The learning curves (Figure 4.6) were constructed using values recorded 

by the end of each iteration for both the training and validation sets. Meanwhile, the test 

set was employed to evaluate trained models. Additionally, the dice coefficients for the 

training, validation, and test sets were examined to capture the influence of synthetic 

and geometric augmentations compared to the baseline, which exclusively relied on real 

images. Finally, Pearson's correlation coefficient (r) was used to assess the correlation 

between these metrics and the amount of synthetic data used. 

 

 



 

Chapter 4 

 

Research Results and Discussion  

 

        The results of each study conducted in the context of this research are presented in 

this chapter. These findings and their respective contributions to the overarching 

objectives of this research are thoroughly discussed. The first study involved generating 

synthetic Computed Tomography (CT) images and investigating the influence of the 

dataset size on quantitative evaluation metrics. The following study examined the 

impact of using a randomly initialized Inception V3 network to produce image feature 

vectors versus pre-trained weights. In the final study, the findings of previous studies 

were leveraged to evaluate the effectiveness of using synthetic data augmentation to 

train a deep fully convolutional network for automatically segmenting brain tumors in 

neuroimaging data. 

 

 4.1 PGGAN Data Generation and Metrics Investigation 

 

        The PGGAN was trained in 8 stages; at each stage, the model was scaled up by a 

factor of 2, producing images in higher resolution, starting from 4 × 4 and going up to 

512 × 512. The training was stable despite the loss fluctuation displayed in Figure 4.1. 

Visually, most of the generated images resembled real ones to a high degree. However, 

there were some exceptions. Appendix A illustrates realistic and unrealistic images 

produced by the PGGAN. Tables 4.1, 4.2, and 4.3 report evaluated metric scores, 

showing how dataset size affects FID, IS, and P and R metrics, respectively. Best scores 

were observed with the largest sets. Hence, the rest of this discussion focuses on those 

results. 
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Figure 4.1 PGGAN Training Loss Curves 

Source: Researcher, 2024 

 

        FID scores in Table 4.1 show an inverse relationship with dataset size when 

evaluated among real and against generated image sets. The FID score decreased, 

indicating higher similarity between the two sets, as we incremented the number of 

images equally for both sets.  At 3,675 images for all, the FID score between the 

generated and validation sets was 42.40, the training and validation sets was 24.06, and 

the generated and training sets was 31.6. This indicates a potential margin for 

improvement by 18 between generated and training sets when compared with training 

and validation score. Unexpectedly, in some studies, the FID computed between the 
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training and validation sets, both real CT images, exceeded that reported for real and 

generated images (Skandarani et al., 2021).  

 

Figure 4.2 Real (Top) and PGGAN Generated Images (Bottom) 

Source: Researcher, 2024 

 

Table 4.1 Fréchet Inception Distance (Standard deviation, five replications) 

Number of 

images 

Generated VS 

Validation 

Training VS 

Validation 

Training VS 

Generated 

1,225 52.14 (1.30e-05) 32.10 (3.70e-06) 42.03 (7.50e-6) 

2,450 44.78 (8.31e-08) 26.41 (7.02e-08) 33.884 (4.50e-08) 

3,675 42.40 (2.11e-12) 24.06 (1.62e-12) 31.66 (4.40e-12) 

         

        As seen in Table 4.2, the change in inception score did not significantly vary with 

the number of image variations. Also, the score was almost similar for both real and 

generated images, indicating high similarity between the two sets. However, the 

validation set was lower. This perhaps stems from the variations among real images, as 

the training set consisted of 45 CT scans while the validation set consisted of 15 CT 

scans.  

 

Table 4.2 Inception Score (Standard deviation, five replications) 

Number of 

images 

Generated VS 

Validation 

Training VS 

Validation 

Training VS 

Generated 

1,225 3.02 (0.004) 2.71 (0.004) 2.938 (0.004) 

2,450 3.00 (0.002) 2.764 (0.002) 2.992 (0.002) 

3,675 3.075 (0.002) 2.766 (0.001) 3.02 (0.001) 
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        In Table 4.3, As the dataset size increased, the precision and recall values generally 

decreased, indicating a potential trade-off between dataset size and image. The most 

favorable scores were observed when comparing the generated images to the training 

set, as anticipated. In contrast, the comparisons with the validation set yielded relatively 

lower scores. These outcomes are partially attributed to the sensitivity of the k 

parameter, which significantly impacts the precision and recall metrics.  

 

Table 4.3 Precision and Recall (P, R; k=3) 

Number of 

images 

Generated VS 

Validation 

Training VS 

Validation 

Training VS 

Generated 

1,225 0.30, 0.47 0.38, 0.55 0.67, 0.77 

2,450 0.13, 0.37 0.16, 0.31 0.46, 0.73 

3,675 0.04, 0.32 0.06, 0.18 0.29, 0.68 

 

        Overall, this study's findings suggest that although the generated synthetic images 

appeared realistic, there is still room for improvement in the image generation process. 

This is evident by comparing the FID score between validation and generated images 

and validation and real images. Appendix A illustrates both realistic and unrealistic 

images generated by the PGGAN. Additionally, the study highlights that larger datasets 

lead to more precise evaluation scores, particularly in FID. This underscores the 

significant impact of dataset size on quantitative evaluation metrics. 

 

4.2 Pre-trained Inception v3 

 

        This study investigated the initialization method of weights for the Inception v3 

convolutional neural network model, which produces feature vectors for real and 

generated synthetic images in the form of 2048-element vectors. These vectors are 

subsequently employed to compute the FID score. Two common weight initialization 

methods are explored: pre-trained weights and random weights. Pre-trained weights are 

derived from training with a subset of everyday color images from the ImageNet Large 

Scale Visual Image Recognition Challenge (ILSVRC) dataset. 
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        It can be observed from Figure 4.3 that increasing the level of distortion would 

typically increase the FID. However, the level of incrementation is highly influenced by 

the type and level of distortion. This is especially true for the randomly initialized 

inception V3 model. At level 0 of distortion, FID was close to zero as expected.  To a 

certain extent, similar FIDs were observed at level 1 of distortion for some of the noises. 

The sample size might have caused this. Generally, the pre-trained model produced 

consistent FID scores that increased in a proportional relationship with the level of 

distortion. The random model was sensitive to Gaussian and impulse distortions and 

insensitive to swirl distortion. 

 

 

Figure 4.3 Distortions Effect on FID 

Source: O'Reilly & Asadi, 2021 

 

        Tables 4.4 and 4.5 include normalized FID values computed for feature vectors 

produced by both the pre-trained and random models. It is observed that the pre-trained 

model yields high FIDs between different image types, indicating that the feature 

vectors it produces are more diverse and distinct. When comparing the same image type, 

the FIDs are slightly larger than those produced by the random model, suggesting that 

the feature vectors produced by the random model are more consistent with each other. 

However, the random model also results in lower FID between different types of images, 

indicating that the feature vectors it produces are less diverse and distinct from each 



39 

 

other, which is unfavorable. Overall, the pre-trained model appears to be better at 

distinguishing between image types. 

 

Table 4.4 Normalized FID Between Different Types of Images for Pre-trained Model 

 X-ray CT Fundus Dog 

X-ray 0.093 0.773 1.000 0.78 

CT 0.773 0.100 0.803 0.722 

Fundus 1.000 0.803 0.000 0.777 

Dog 0.789 0.722 0.777 0.030 

 

Table 4.5 Normalized FID Between Different Types of Images for Random Model 

 X-ray CT Fundus Dog 

X-ray 0.002 1.000 0.467 0.251 

CT 1.000 0.000 0.176 0.323 

Fundus 0.467 0.176 0.001 0.060 

Dog 0.251 0.323 0.060 0.010 

 

        t-SNE was employed to transform image feature vectors into a two-dimensional 

space. Unlike the random model, the feature representations produced by the pre-trained 

model were linearly separable. This further confirms that the pre-trained model 

outperforms the randomly initialized model at capturing meaningful image features 

across different types of images. 

 

4.3 StyleGAN2-ADA Data Generation and Integration for Deep-

learning Training 

 

        In this study, the significant disparity in FID scores between (real and generated) 

and (real and validation) sets, observed in the initial study, underscores the necessity for 

an alternative GAN architecture capable of generating more realistic synthetic images. 

To that end, StyleGAN2-ADA was trained for three full days, during two of which, the 

generated synthetic image quality subjectively improved through visual tests and FID 
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scores. On the third day, the training hit a plateau, and there was no decrease in FID or 

noticeable visual improvements. The best model produced an FID score of 14.39, falling 

within the expected range for GAN-generated neuroimaging data based on existing 

literature (Kossen et al., 2022; Kossen et al., 2021; Subramaniam et al., 2022). However, 

it is worth noting that factors like image resolution, dataset size, and the specifics of the 

computational approach can influence the FID score, potentially leading to misleading 

comparisons (Nunn, Khadivi, & Samavi, 2021; O'Reilly & Asadi, 2021; O'Reilly, 

2022). The generated images were observed to be realistic and akin to real ones, yet they 

don't replicate them exactly, a desirable outcome. There were almost no visually 

noticeable artifacts. A significant improvement compared the PGGAN generated 

images (Asadi & O'Reilly, 2021; Carver et al., 2021; Foroozandeh & Eklund, 2020; 

Karras et al., 2020; Karras et al., 2019; Park et al., 2021).  

 

 

Figure 4.4 Real (Top) and StyleGAN-ADA Generated Images (Bottom) 

Source: Researcher, 2024 

 

        Further investigation went into assessing generated images by employing t-SNE 

for feature vector visualization. We sampled 2,751 real and 2,751 random synthetic 

images and extracted their feature vectors using a pre-trained Inception V3 model. The 

resulting visualization displayed an overlap between the real and generated synthetic 

image distributions (Figure 4.5). This further backed our visual assessment and the low 

FID score, showing that synthetic images are indistinguishable as such, similar to the 

work of (Woodland et al., 2022). However, a small number of poorly generated images 

were found through an intensive visual inspection. Those images lacked details in 
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FLAIR images or had a noise/fade in segmentation masks, which was mitigated by 

applying thresholding. A sample of poorly generated images can be found in Appendix 

C. 

 

 

Figure 4.5 t-SNE Visualization for Real (Blue) and Synthetic (Red) Image  

Feature Vectors 

Source: Researcher, 2024 

 

        Various elements need to be assessed when considering the tradeoff between the 

computational costs of training a GAN and generating synthetic images and the benefits 

of using them. These elements include the time, energy, and memory demands 

associated with GAN training, as well as the subsequent U-net training with an 

augmented dataset. As for the benefits, we can analyze the improvements in 

segmentation performance achieved through synthetic data augmentation. 

 

        The GAN model was employed to generate 14,000 synthetic images split into 

fourteen batches. All images were then split into their corresponding FLAIR images and 

glioma segmentation masks. Upon separation, generated flair images matched well with 

extracted glioma masks. Furthermore, the location and morphology of tumor regions 

within healthy brain tissue varied, a desired outcome. They were then employed across 

fourteen rounds to augment real images and investigate the impact of synthetic data 
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augmentation on the efficacy of the U-net model trained for automated glioma 

segmentation. 

 

        The U-nets training rounds, the quantity of added synthetic images, iterations per 

round, overall training period, and time per epoch are detailed in Tables 4.6 and 4.7 for 

U-nets trained with and without geometric augmentation techniques. Investigations 

revealed that the correlation between the number of training iterations and the quantity 

of added synthetic images was insignificant, with correlation coefficients of -0.201 and 

a p-value of 0.472  without geometric augmentation, and correlation coefficients of 

-0.426 and a p-value of 0.113 with geometric augmentation. However, that is not the 

case when it comes to the overall training period and time per epoch. The analysis of 

the former produced a correlation coefficient of 0.776 and a p-value of 6.76×10-4 

without geometric augmentation and a correlation coefficient of 0.937 and a p-value of 

2.69×10-7 with geometric augmentation. The analysis of the latter resulted in a 

correlation coefficient of 1.0 and a p-value of 4.65×10-24 without geometric 

augmentation and a correlation coefficient of 1.0 and a p-value of 1.83×10-29  with 

geometric augmentation. Both analyses demonstrated significant correlations with the 

rounds of synthetic data augmentation. This is reasonable considering that the increase 

in training data leads to an increase in training batches and, consequently, more time for 

model parameter optimization. 

 

        Overall, the results indicate that while training takes longer with the addition of 

synthetic data, the U-net achieves its best performance within similar numbers of 

iterations. However, this does not present the complete story.  

 

        The training progression of U-nets without and with geometric augmentation, using 

varying levels of synthetic image augmentation are illustrated in Figures 4.7 and 4.8. 

Both training and validation set losses during model training are represented in Figure 

4.6. The convergence of training set losses accelerates with the increased usage of 

synthetic images for augmentation. Upon analyzing the learning curves, the rate of loss 

change was evaluated, showing a significant correlation between the initial convergence 

rate of training loss and the number of synthetic images used, with a correlation 
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coefficient of -0.989 and a p-value of 2.86×10-12  without geometric augmentation. 

Similar behavior was observed with geometric augmentation, with a correlation 

coefficient of -0.991 and a p-value of 9.18×10-13. 

 

Table 4.6 U-nets Training without Geometric Augmentation 

Round 
Real + Added 

Synthetic Images 
Iterations Training Time 

Minutes Per 

Iteration 

1 3,751 135 03:05:04 1.37 

2 4,751 111 03:11:31 1.73 

3 5,751 86 02:57:59 2.07 

4 6,751 164 06:33:49 2.4 

5 7,751 99 04:32:29 2.75 

6 8,751 110 05:46:42 3.15 

7 9,751 94 05:27:24 3.48 

8 10,751 100 06:26:45 3.87 

9 11,751 64 04:29:09 4.21 

10 12,751 164 12:24:10 4.54 

11 13,751 164 13:23:24 4.9 

12 14,751 111 09:43:18 5.25 

13 15,751 77 07:12:53 5.62 

14 16,751 94 09:21:16 5.97 

 

     A comparable correlation was observed between the initial convergence rate of 

validation loss and the number of synthetic data, with a correlation coefficient of -0.67 

and a p-value of 0.00629 without geometric augmentation, and a correlation coefficient 

of - 0.943 and a p-value of 1.4×10-7  with geometric augmentation (Figure 4.8). 

However, by the second training iteration, the correlation between the convergence rates 

of validation loss and the amount of synthetic data diminished - (correlation coefficient 

of - 0.228 and p-value of 0.413 without geometric augmentation, and correlation 

coefficient of 0.369 and p-value of 0.176 with geometric augmentation). 
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Table 4.7 U-nets Training with Geometric Augmentation 

Round 
Real + Added 

Synthetic Images 
Iterations Training Time 

Minutes Per 

Iteration 

1 3,751 140 02:24:02 1.03 

2 4,751 111 02:31:44 1.37 

3 5,751 111 03:10:33 1.72 

4 6,751 111 03:48:34 2.06 

5 7,751 78 03:08:12 2.41 

6 8,751 114 05:14:30 2.76 

7 9,751 98 05:04:03 3.1 

8 10,751 87 05:00:18 3.45 

9 11,751 125 07:51:41 3.77 

10 12,751 95 06:31:45 4.12 

11 13,751 97 07:12:02 4.45 

12 14,751 97 07:48:23 4.83 

13 15,751 123 10:32:51 5.15 

14 16,751 89 08:10:20 5.51 

 

        The combined results indicate that initially U-net optimization benefits from 

synthetic data augmentation. However, optimizing its weights requires similar numbers 

of iterations through the training data before the early stopping condition is met. These 

results make it challenging to justify that the advantages of synthetic data augmentation 

outweigh the added costs. 

 

 



45 

 

 

Figure 4.6 Learning Curves: Without (Top) and with Geometric  

Augmentation (Bottom) 

Source: Researcher, 2024 

 

        Geometric augmentation involving flipping, rotation, scaling, and color 

adjustments offers an advantage in enhancing the model’s ability to adapt better to 

varied inputs, eliminating the necessity for the extra computational burden from training 

and employing a GAN to produce synthetic images. 

 

        Figure 4.7 displays dice coefficients for U-nets in 14 rounds of training with 

increments in synthetic image augmentation without geometric augmentation. It was 

found that augmenting the training set with synthetic images had no effect on its 

performance. An absence of correlation was evident across all sets—training, validation, 

and test observed through low correlation coefficients and p-values that are not 

statistically significant. 

 

        Similar outcomes are seen upon incorporating geometric augmentation. The 

relationship between segmentation performance and the quantity of synthetic data 

remains statistically nonsignificant across all datasets. Nevertheless, the geometric 

augmentation enhanced model generalization and contributed to reducing variations in 

performance among the training, validation, and test sets present in Figure 4.8, 

suggesting a more consistent performance of the model across diverse datasets. 
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Figure 4.7 Dice coefficients for U-nets training without geometric augmentation 

Source: Researcher, 2024 

 

 

Figure 4.8 Dice coefficients for U-nets training with geometric augmentation 

Source: Researcher, 2024 

 

        The U-nets model was also trained using only real images and corresponding 

segmentation masks. The Dice coefficients for the training, validation, and testing sets 

were 0.932, 0.819, and 0.877, respectively. We then repeated the process, introducing 

synthetic image augmentation, resulting in Dice coefficients of 0.944, 0.860, and 0.912, 

indicating progress in the validation and test set scores. When we applied only geometric 

augmentation, the Dice coefficients were 0.912, 0.878, and 0.897 for the training, 
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validation, and testing sets. Finally, we applied synthetic image and geometric 

augmentations, resulting in Dice coefficients of 0.910, 0.898, and 0.911. Notably, the 

standard deviation of Dice coefficients for U-nets trained without geometric 

augmentation was 0.0406, while it was 0.0104 for those trained with geometric 

augmentation, indicating improvement in generalization.  

 

        The results align with other studies that used progressively growing GAN and a 

combination of GANs and found slight enhancements in brain tumor segmentation using 

GAN-generated synthetic data (Foroozandeh & Eklund, 2020; Larsson et al., 2022). 

Although an ensemble of GANs resulted in improved U-net segmentations compared to 

no data augmentation, with an average Dice coefficient of 0.735 versus 0.729, the 

expense associated with this approach makes it challenging to justify, particularly 

considering the relatively modest enhancement observed. 



 
 

 

Chapter 5 

 

Conclusion and Recommendations 

 

 5.1 Conclusion 

 

        From the first study conducted in this research, it was found that most of the 

synthetic images generated by the PGGAN resembled the real images to a high degree. 

This was supported by quantitative metrics scores with FID of 42.4, IS of 3.0, and P and 

R of 0.04 and 0.32, respectively. Although these scores approached state-of-the-art back 

then, there was a large margin for improvement in the GAN performance. We also 

noticed that the FID metric produced the most accurate representation of the GAN’s 

performance. 

 

        The next study indicated that a pre-trained Inception V3 model is favored over a 

randomly initialized weights model for medical image feature vector extraction. The 

pre-trained model’s ability to produce feature vectors that are separable for the same or 

different image types makes it valuable for enhancing the evaluation of synthetic 

medical images and improving the reliability of comparisons across studies. 

         

        Building upon the findings from the first two studies, in the last study, a different 

GAN architecture was employed, specifically StyleGAN2-ADA, and a pre-trained 

Inception V3 model was used during FID computations. The synthetic images generated 

by the GAN model were impressive and practically indistinguishable from real images, 

with an FID score of 14.39. Then, 14,000 synthetic images and their masks were 

generated and used to augment a segmentation model, U-nets, during training. However, 

this did not significantly improve the segmentation performance when evaluated using 

validation and test sets yielding Dice coefficient scores of +0.0409 for the first and 

+0.0355 for the latter. This could be due to the data distributions in the training, 

validation and test sets partially not overlapping. Meanwhile, geometric augmentation 

 



49 

 

improved the generalization with standard deviation among training, validation, and test 

sets of 0.04 without geometric augmentation and 0.01 with geometric augmentation. 

These findings suggest that the costs associated with GAN training may be challenging 

to justify, given the little enhancements observed in augmenting the segmentation model 

with synthetic data. Nonetheless, it remains plausible that synthetic data augmentation 

could yield more improvement in segmentation performance under different 

circumstances. Moreover, realistic synthetic data holds promise in vital domains such 

as medical data anonymization and safeguarding patient privacy. Ultimately, we hope 

that the findings of this work contribute in future research aimed at refining and fine-

tuning GAN architectures specifically for medical image generation. 

 

 5.2 Recommendations 

 

        While the incorporation of synthetic images to augment training data for U-net 

models in brain tumor segmentation did not result in significant performance 

improvements, it's crucial to recognize that results may vary depending on different 

scenarios. Further investigation is recommended, including the exploration of 

alternative deep learning architectures. Additionally, exploring other potential 

applications of Generative Adversarial Networks (GANs) to address data scarcity 

issues, such as anonymization, is suggested. 

 

5.3 Research Outputs 

 

        List of publications derived from conducted research: 

        5.3.1 Asadi, F., & O’Reilly, J. A. (2021). Artificial Computed Tomography Images 

with Progressively Growing Generative Adversarial Network. 2021 13th Biomedical 

Engineering International Conference (BMEiCON), 1-5. https://doi.org/10.1109 

/BMEiCON53485.2021.9745251 
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        5.3.2 O'Reilly, J. A., & Asadi, F. (2021). Pre-trained vs. random weights for 

calculating fréchet inception distance in medical imaging. 2021 13th Biomedical 

Engineering International Conference (BMEiCON), 1-4.https://doi.org/10.1109 

/BMEiCON53485.2021.9745214 

 

        5.3.3 O'Reilly, J. A., & Asadi, F. (2022). Identifying Obviously Artificial Medical 

Images Produced by a Generative Adversarial Network. 2022 44th Annual International 

Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 430-433. 

https://doi.org/10.1109/EMBC48229.2022.9871217 

 

        5.3.4 O’Reilly, J. A., Wehrman, J., Carey, A., Bedwin, J., Hourn, T., Asadi, F., & 

Sowman, P. F. (2023). Neural correlates of face perception modeled with a 

convolutional recurrent neural network. Journal of Neural Engineering, 20(2), 026028. 

https://doi.org/10.1088/1741-2552/acc35b 

 

        5.3.5 Asadi, F., Angsuwatanakul, T., & O’Reilly, J. A. (2024). Evaluating synthetic 

neuroimaging data augmentation for automatic brain tumour segmentation with a deep 

fully-convolutional network. IBRO Neuroscience Reports, 16, 57-66. https://doi.org 

/10.1016/j.ibneur.2023.12.002
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Real Images (batch 1) 
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Real Images (batch 2) 
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Realistic PGGAN-generated synthetic images (batch 1) 
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Realistic PGGAN-generated synthetic images (batch 2) 
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Unrealistic PGGAN-generated synthetic images (batch 1) 
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Unrealistic PGGAN-generated synthetic images (batch 2) 
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Study 2: Dataset



72 
 

Chest X-ray images (batch 1) 

 

 
  



73 
 

Chest X-ray images (batch 2) 
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Computed Tomography (CT) scans of the thoracic region (batch 1) 
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Computed Tomography (CT) scans of the thoracic region (batch 2) 
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Color fundus photographs (batch 1) 
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Color fundus photographs (batch 2) 
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Golden retriever (dog) images (batch 1) 
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Golden retriever (dog) images (batch 2) 
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Study 3: Datasets, Realistic, and Unrealistic  

StyleGAN2-ADA Generated Images 
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GAN prepared real images (batch 1) 
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GAN prepared real images (batch 2) 
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Realistic StyleGAN2, ADA-generated synthetic images (batch 1) 
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Realistic StyleGAN2, ADA-generated synthetic images (batch 2) 
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Unrealistic StyleGAN2, ADA-generated synthetic images (batch 1) 
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Unrealistic StyleGAN2, ADA-generated synthetic images (batch 2) 
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U-nets prepared real images (batch 1) 
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U-nets prepared real images (batch 2) 

 

 
 
  



89 

 

Generated synthetic data for U-nets (batch 1) 
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Generated synthetic data for U-nets (batch 2) 
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