
DETERMINING SUCCESS IN SNATCH WEIGHTLIFTING 

USING POSE LANDMARKS AND BARBELL DETECTION 

BY 

MING QI 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR  

THE DEGREE OF MASTER OF ENGINEERING  

IN ELECTRICAL AND COMPUTER ENGINEERING 

COLLEGE OF ENGINEERING  

GRADUATE SCHOOL, RANGSIT UNIVERSITY 

ACADEMIC YEAR 2024 

http://www2.rsu.ac.th/files/2010LogoF4_JPG.zip


Thesis entitled 

 

DETERMINING SUCCESS IN SNATCH WEIGHTLIFTING USING POSE 

LANDMARKS AND BARBELL  

 

by 

MING QI 

 

was submitted in partial fulfillment of the requirements 

for the degree of Master of Engineering in Electrical and Computer Engineering  

         

Rangsit University 

Academic Year 2024  

 

 

 

---------------------------------------------- 

Assoc.Prof. Opas Chutatape, Ph.D. 

Examination Committee Chairperson  

 

---------------------------------------------------- 

Asst.Prof. Supattana Nirukkanaporn, D.Eng. 

Member 

 

 

 

 

---------------------------------------------------- 

Assoc.Prof. Rong Phoophuangpairoj, Ph.D. 

Member and Advisor 

 

 

Approved by Graduate School 

 

(Prof. Suejit Pechprasarn, Ph.D.) 

Dean of Graduate School 

October 31, 2024



 
 

i 

Acknowledgements 

 

I would like to extend my sincere gratitude to my advisor, Assoc. Prof. Rong 

Phoophuangpairoj, Ph.D., for his invaluable guidance and profound insights throughout 

my research journey, particularly in selecting and exploring the research topic. His 

mentorship has been instrumental in shaping my academic pursuits and enhancing my 

understanding of this field. 

 

       Ming Qi     

     Researcher 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ii 

6509121 : Ming Qi 

Thesis Title : Determining Success in Snatch Weightlifting Using Pose 

Landmarks and Barbell Detection 

Program : Master of Engineering in Electrical and Computer Engineering 

Thesis Advisor : Assoc.Prof. Rong Phoophuangpairoj, Ph.D. 

 
Abstract 

This research integrated computer vision and machine learning techniques to 

objectively evaluate snatch weightlifting success. By leveraging MediaPipe for skeletal 

detection and You Only Look Once (YOLO) object detection for barbell detection, the 

study classified snatch into six phases. An artificial neural network (ANN) and support 

vector machine (SVM) were applied to classify weightlifting phases from features 

extracted using MediaPipe. The distances between an athlete’s hands and a barbell were 

computed using the MediaPipe features, which represented the points on an athlete’s 

right and left hands as well as the points on a barbell. This study employed different 

methods to evaluate weightlifting success. For example, the method that used the 

holding period of the sixth phase could obtain a 95% accuracy rate, whereas the method 

that evaluated the presence of all six phases in sequence could derive a lower accuracy 

of 70%. A method that evaluated the ordered six phases, the holding time of the sixth 

phase, and the barbell slipping achieved the highest accuracy rate of 100%. The 

proposed method, which did not require specialized equipment, could achieve notable 

weightlift phase classification and efficiently determine the success or failure of snatch 

weightlifting. 
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Chapter 1 

 

Introduction 

 

1.1 Background of the Research 

 

Weightlifting is considered one of the greatest tests of strength and power 

(Ulareanu, Potop, Timnea & Cheran, 2014). Weightlifting is a global sport that is part 

of the Olympics. People from all over the world follow the weightlifting tournament and 

cheer on their athletes in the fight for gold. Weightlifting athletes attempt to successfully 

lift the heaviest weights by lifting a barbell with weight plates up from the floor to 

overhead. The snatch is one of the two main lifts used in weightlifting. The athlete lifts 

the barbell up from the floor in a single movement (Géron, 2019). 

  

1.2 Significance of the Research 

 

This research was underscored by its comprehensive exploration of the 

intersection between weightlifting, computer vision, and machine learning. The 

integration of MediaPipe and YOLO in addressing pose and a barbell added a layer of 

complexity and practicality to the study. The following points were investigated in this 

study: 1) Snatch phase classification: By accurately identifying the six phases of snatch 

lifting as shown in Table 1.1, the research provided a valuable tool for determining the 

success of snatch weightlifting. 2) Success/Failure Detection: Training features based 

on successful and failed lifts empowered the system to method classify attempts. The 

method removed subjectivity from judging and provided immediate feedback to 

athletes, enabling real-time adjustments and performance optimization. 3) Accessibility 

and Generalizability: Because MediaPipe did not rely on specialized equipment. 

Additionally, this research paved the way for adapting the system to other weightlifting 

disciplines or even other sports altogether. 
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Table 1.1 Snatch weightlifting phases 

Phase Posture Phase Posture 

(1) the first pull 
 

(4) turnover under 

the barbell 

 

(2) the transition 

from the first to 

the second pull  

(5) the catch phase 

 

(3) the second 

pull  

(6) rising from the 

squat position (and 

fully stand) 
 

Source: Qi & Phoophuangpairoj, 2024 

 

To integrate MediaPipe and YOLO, the study proposed a two-pronged 

approach to tackle the challenges of snatch weightlifting analysis. 1) MediaPipe for 

Skeletal Recognition: This open-source framework efficiently extracts skeletal 

keypoints from video data, captures the athlete's movement patterns during the snatch 

lifting. Analyzing these keypoints in relation to the six phases allows for phase 

identification and technique evaluation. 2) YOLO for Barbell Detection: YOLO's object 

detection capabilities accurately locate the barbell in each frame, enabling its trajectory 

and interaction with the athlete to be tracked. This information is crucial for 

understanding barbell path, speed, and overall lift mechanics. 

 

By extracting relevant features from successful and failed lift attempts, the 

research aims to train a model that can method classify future lifts. This involves: 1) 

Feature Identification: Key features such as the distance between hands and barbell were 

extracted from both successful and failed lifts. 2) Model Training: These features were 

used to train a machine learning model to distinguish snatch weightlifting phases which 

were used for determining the weightlifting success or not. 
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Overall, this research presented a promising approach for applying computer 

vision and deep learning to develop efficient methods to classify weightlifting  phase 

and determine the success or not by using MediaPipe and YOLO, this research has the 

potential to help referees to judge whether the lifting is successful. 

  

1.3 Significance of the Problem 

 

The challenges associated with weightlifting analysis presented significant 

barriers to effective training and performance improvement, impacting both 

professional and amateur athletes. Addressing these issues holds immense potential for 

athletes, coaches, and the sport as a whole. Here 's why: 1) Subjectivity in performance 

evaluation: The current reliance on subjective judgments from coaches and judges leads 

to inconsistencies and biases in technique assessment. 2) Addressing this challenge is 

promising:  Classification of successful and failed lifts eliminates subjectivity from 

judging, ensuring fair and consistent evaluations, particularly in competitive settings, 

benefiting both athletes and judges. 

  

Therefore, the investigation of novel methods for objective, accessible analysis 

of weightlifting, as proposed in this research, assumes significant importance in 

advancing the sport of weightlifting as a whole. 

 

 1.4 Research Objectives 

 

The research objectives include: 1) Develop a method for classifying the phases 

of snatch weightlifting. 2) Develop a method for determining weightlifting success or 

failure.  

  

1.5 Scope of the Study     

 

The scope includes: 1) Classify snatch weightlifting phases from images. 2) 

Classify the success of snatch weightlifting based on short videos. 3) Use front-view 
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snatch weightlifting images and videos. 4) Weightlifting videos consisted of only the 

weightlifting scenes. 

 

1.6 Research Framework 

 

The research framework includes: 1) Extract images from a snatch 

weightlifting video. 2) Classify the extracted images into phases. 3) Detect a barbell in 

a image. 4) Compute the distances between weightlifter’s hands and a barbell. 5) Based 

on the list of recognized phase for each frame in the video sequence, determine the order 

of the weightlifting video sequence, phase duration information, and assess the success 

of the lift. 6) Determine the success in weightlifting based on the list of recognized phase 

for each frame in the video sequence and the distance between weightlifter’s hands and 

barbells. 

 

1.7 Definition of Terms 

 

Term 1    Skeleton behavioral recognition 

Skeleton behavioral recognition utilizes principles from computer vision and 

deep learning to detect and analyze human behavior (Patil, Rao, Utturwar, Shelke & 

Sard, 2022). This process focuses on interpreting the positions and movements of 

skeletal joints. In the context of weightlifting, it plays a crucial role in understanding 

and assessing the biomechanics of athletes' movements during lifts. This study primarily 

relied on information obtained from 33 key points, including the head, limbs, and torso, 

using MediaPipe. 

  

Term 2    Object recognition  

Object recognition is a computer vision technology that identifies, detects, and 

locates specific objects, items, or patterns within visual data, typically derived from 

images or videos (Howard et al., 2017). Due to the unique characteristics of the barbell 

in this study, the standard YOLO model is unable to detect and provide the position. To 

overcome this limitation, a custom barbell model was trained using sampled images 

from weightlifting videos. This ensures the effectiveness of recognizing weightlifting 
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actions and a barbell as well as provides reference data to determine the success or 

failure of a lift. 

 

Term 3    MediaPipe and YOLO integration 

MediaPipe and YOLO were applied for skeletal feature extraction and object 

detection, respectively. This study used MediaPipe to extract skeletal features of an 

athlete and YOLO to detect a barbell.  

  

Term 4    Image training model and feature training model 

This study provided two image classification solutions for the detection 

weightlifting phases. The image training model involves classifying images based on 

different behavioral phases, trained using algorithms such as Convolutional Neural 

Networks (CNNs). The feature-based models for phase classification were obtained 

from extracted features using MediaPipe and YOLO which were trained using 

algorithms such as ANN and SVM. 

   

Term 5    Landmark 

Landmarks referred to the 33 skeletal coordinates and two barbell coordinates 

extracted via MediaPipe. These landmarks played a crucial role in the research as they 

form the features for classifying phases and determining the success or not. 

  

Term 6    Snatch lifting phases 

The phases of a snatch lift contain 1) the first pull, 2) the transition from the 

first to the second pull, 3) the second pull, 4) the turnover under the barbell, 5) the catch 

phase, and 6) rising from the squat position (and fully standing). 

  

Term 7    Basic and extended features of weightlifting 

The features are categorized into 3 groups: skeleton landmark coordinates (66 

features, with 33 coordinates each along both the x and y axes); barbell landmark 

coordinates (4 features, with 2 coordinates each along both the x and y axes). These 70 

basic features were used for classifying weightlifting phases; additionally, there are 2 
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extended features representing the distances between each hand and the barbell, which 

were used for determining success. The total number of features is 72. 

  

Term 8    Distance between barbell and hand  

The distance involves treating the two barbell points as a spatial vector. The 

distances from the wrist points (landmarks 15 and 16 in MediaPipe) to the barbell vector 

line were used to compute the closest distance between the hand and the barbell. Then 

the distance was divided by the length of a barbell. A proportion threshold, such as 0.3, 

indicated a dropped barbell. The diastace was applied to judge whether the barbell 

slipped from hands. 

 

Term 10    Sequence of a video 

A video sequence consists of continuous frames from a weightlifting video. This 

sequence was used in the snatch weightlifting classification and the determination of 

weightlifting success. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Chapter 2 

 

Literature Review 

  

The recognition of weightlifting activities in this study encompasses image 

recognition, behavioral recognition, skeleton detection, and object recognition. Image 

recognition primarily relies on classification methods within CNN models. Behavioral 

recognition involves the temporal analysis of results obtained from 2D CNN image 

recognition, representing a process of temporal image sequence processing and analysis. 

This temporal analysis encompasses object recognition and feature extraction. This part 

covered weightlifting posture, image recognition, feature extraction and feature 

classification, action recognition, skeletal recognition, and object recognition. 

 

2.1 Weightlifting Posture 

 

Several studies focused on classifying snatch lifting phases to improve 

technique analysis. For example, (Korkmaz & Harbili, 2015; Korayem et al., 2010) 

developed methods to accurately segment and evaluate each phase, enhancing feedback 

for athletes and increasing the precision of performance assessments. They divided the 

snatch weightlifting into six phases, as shown in figure 2.1. 

 

 

Figure 2.1 Snatch weightlifting phases 

Source: Korkmaz & Harbili, 2015; Korayem, Mustafa, Korayem & Amanati, 2010 
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2.2 Image Recognition 

  

Image recognition, as a pivotal domain in computer vision, has undergone a 

remarkable evolution over the years, shaping the landscape of visual perception and 

paving the way for advancements in various applications. The history of image 

recognition can be traced back to the early days of computer vision research when basic 

pattern recognition techniques were employed to discern primitive features within 

images. 

  

The initial phase of image recognition primarily revolved around handcrafted 

feature extraction methods, where researchers meticulously designed algorithms to 

identify specific patterns or edges in images. However, these early approaches were 

limited by their reliance on predefined features, making them susceptible to variations 

in lighting conditions, scale, and orientation. 

  

A transformative breakthrough occurred with the advent of machine learning 

and the introduction of more sophisticated techniques in the late 20th century. The 

emergence of CNNs marked a paradigm shift in image recognition, allowing systems to 

automatically learn hierarchical representations of features directly from raw pixel data. 

LeCun et al. (1998) examined the utilization of gradient-based learning in document 

recognition, demonstrating its utility in advancing recognition technology. 

  

The early 21st century witnessed the ascent of deep learning, further propelling 

the capabilities of image recognition systems. Notably, the ImageNet large-scale visual 

recognition challenge played a pivotal role, in the development of increasingly 

sophisticated CNN architectures.  Krizhevsky, Sutskever & Hinton (2017) investigated 

the application of deep convolutional neural networks in image recognition and 

achieved breakthrough results in the ImageNet challenge for large-scale visual 

recognition. 

  

Géron (2019) examined the developments in CNN architectures such as 

AlexNet, VGGNet, and ResNet. These models significantly improved image 
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recognition and reduced top-5 error rates in competitions. AlexNet achieved a top-5 

error rate of 17%, VGGNet introduced a simple yet effective architecture, and ResNet 

pioneered residual learning for training extremely deep CNNs. 

  

Despite these strides, challenges persist in image recognition. Robustness to 

adversarial attacks, interpretability of complex models, and the need for large labeled 

datasets are among the ongoing research fronts. Addressing these challenges is crucial 

to enhancing the reliability and practical applicability of image recognition systems. 

  

2.2.1 Background of Image Recognition 

 

Image recognition technology is an important branch of computer science, 

which studies how to extract information from images. Image recognition technology 

has applications in many fields, including medical, transportation, security, etc. In the 

field of weightlifting, image recognition technology has also been widely researched 

and applied. 

  

Early weightlifting image recognition technology was mainly used for 

technical analysis of weightlifters. Researchers use image recognition technology to 

analyze weightlifters' movements, postures, timing of force exertion, etc. to help athletes 

improve their technical level. For example, Korayem (2010) examined a weightlifter’s 

technical analysis method based on image recognition. This method could identify the 

weightlifter’s starting posture, push-up, bench press and other actions, and provide 

technical improvement suggestions. 

  

With the development of image recognition technology, its application in the 

field of weightlifting is becoming more and more extensive. In recent years, researchers 

have made some progress in the application of image recognition technology to the field 

of weightlifting. For example, Ulareanu et al. (2014) studied a weightlifting penalty 

judgment method based on image recognition. This method can automatically identify 

whether a weightlifter is overweight, whether he has landed, etc., and improves the 

accuracy of penalty decisions. Olaya-Mira, Soto-Cardona, Palacio-Peña and Acevedo-
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Tangarife (2020)  studied a weightlifter training method based on image recognition. 

This method can track the weightlifter's movement trajectory, analyze the weightlifter's 

power output, etc., and help athletes train better. 

  

The application of image recognition technology in the field of weightlifting is 

still in its infancy. With the continuous development of image recognition technology, 

its application in the field of weightlifting will become more extensive. Image 

recognition technology will be more real-time and can analyze the movements and 

postures of weightlifters in real time to improve the efficiency of judgment and training. 

The technology is becoming more diverse and can be combined with other technologies 

such as artificial intelligence, machine learning, etc. to improve the performance of an 

application. 

  

2.2.2 Characteristics of Image Recognition 

 

Image recognition technology has a number of features that make it suitable 

for application in weightlifting. These features include: 1) Accuracy: Image recognition 

technology can automatically identify athlete movements with high accuracy. 2) 

Efficiency: Image recognition technology can automatically perform judging and 

training, improving work efficiency. 3) Objectivity: Image recognition technology can 

avoid the influence of human factors, improving the objectivity of judging and training. 

4) Diversification: Image recognition technology will become more diversified and can 

be combined with other technologies, such as artificial intelligence, machine learning, 

etc., to improve application effects. 

 

2.2.3 Types of Image Recognition 

 

Various image recognition architectures find applications in weightlifting, each 

bringing distinct advantages to the field. These architectures include Géron (2019) 

suggested: 1) Standard CNN models, with their established structures, serve as common 

choices for weightlifting image recognition tasks. These models provide a benchmark 

for comparison and excel at capturing essential features from weightlifting-related 
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images. 2) ResNet, a sophisticated CNN architecture, stands out for its effectiveness in 

diverse image recognition tasks. Despite its complexity, ResNet proves capable of 

discerning intricate patterns within images, making it a robust choice for in-depth 

weightlifting analysis. 3) MobileNet reduces the traditional convolution process used in 

standard convolutional neural networks to a depth-wise separable convolution, which 

comprises of depth-wise and point-wise convolution. 

 

This diverse array of architectures allows for a comparative analysis of their 

practical model accuracies, paving the way for the selection of optimal models for 

subsequent research endeavors. The consideration of complexity, efficiency, and 

adaptability ensures a well-rounded approach to weightlifting image recognition. 

  

2.3 Feature Extraction and Feature Classification 

 

Feature extraction and feature classification play pivotal roles in the realm of 

machine learning and pattern recognition, apply to the accurate and efficient analysis of 

complex data. 

 

2.3.1 Historical Overview of Feature Extraction and Classification 

 

Traditional Methods: Lowe (2004) introduced a method for extracting 

distinctive image features. During this period, feature extraction heavily relied on 

traditional techniques such as SIFT, SURF, and HOG, often coupled with classical 

machine learning algorithms like SVM and KNN (K-Nearest Neighbors) for 

classification. While these methods found extensive use in tasks such as image 

processing and object recognition, they required manual feature engineering and 

struggled with complex datasets. 

  

Emergence of Deep Learning: Krizhevsky et al. (2017) achieved significant 

results in the ImageNet classification task using deep convolutional neural networks. 

The advent of deep learning, notably with the introduction of CNNs like AlexNet in 

2012, marked a paradigm shift in feature extraction and classification. Deep learning 
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models enabled the extraction of abstract and hierarchical features directly from raw 

data, eliminating the need for handcrafted features. 

  

End-to-End Learning and Pre-trained Models: Howard et al. (2017) proposed 

MobileNets, an efficient convolutional neural network architecture for mobile and 

embedded vision applications. The focus shifted towards end-to-end learning and the 

utilization of pre-trained deep learning models. Models such as VGG, ResNet, and 

BERT, pre-trained on large datasets, learned universal feature representations and were 

directly applied to classification tasks, yielding significant performance improvements. 

  

Self-Supervised Learning and Reinforcement Learning: Chen, Kornblith,  

Norouzi and Hinton (2020) presented a simple framework for contrastive learning of 

visual representations. Recent advancements have seen increased interest in self-

supervised learning and reinforcement learning for feature extraction and classification. 

These methods leverage inherent data structures or agent-environment interactions to 

learn effective feature representations, promising further breakthroughs in the field. 

  

2.3.2 Background of Feature Extraction and Classification in This Study 

 

In the context of this study, feature extraction and classification are integral to 

recognizing weightlifting activities. By transforming raw video and image data into 

meaningful features,  it is possible to accurately classify different stages and techniques 

of weightlifting. This involves using both handcrafted features and features learned 

through deep learning models. 

  

For this study, focus on extracting spatial and temporal features from 

weightlifting videos. Spatial features capture the static aspects of the scene, such as the 

positions and orientations of the weightlifter and the barbell. Temporal features, on the 

other hand, capture the dynamic aspects, such as the movement trajectories over time. 

  

To classify these features, employ models such as SVMs and ANNs. SVMs are 

chosen for their robustness in handling high-dimensional data and their effectiveness in 
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binary and multiclass classification tasks. ANNs, particularly deep neural networks, are 

utilized for their ability to learn complex, hierarchical representations of data, which are 

essential for capturing the intricate patterns in weightlifting movements.. 

  

2.3.3 Characteristics of Feature Extraction and Classification 

 

Characteristics include: 1) Automated Feature Learning: Modern deep learning 

models can automatically learn relevant features from raw data, significantly reducing 

the need for manual feature engineering. 2) High Accuracy: Methods like SVMs and 

ANNs have demonstrated high accuracy in classification tasks, making them suitable 

for complex applications like weightlifting recognition. 3) Scalability: These methods 

can handle large datasets and high-dimensional feature spaces, making them scalable 

for extensive weightlifting analysis. 4) Computational Complexity: Training deep 

learning models and SVMs can be computationally intensive, requiring significant 

computational resources. 5) Data Dependency: The performance of these models 

heavily depends on the quality and quantity of the training data. Poor data quality can 

lead to suboptimal model performance. 6) Interpretability: Deep learning models, 

particularly deep neural networks, often operate as "black boxes," making it challenging 

to interpret the learned features and understand the decision-making process. 

 

2.3.4 Types of Feature Extraction and Classification 

 

 2.3.4.1 Feature Extraction Methods 

 

 Feature extraction methods such as Principal Component Analysis 

(PCA), Linear Discriminant Analysis (LDA), and CNNs play crucial roles in various 

computer vision frameworks like MediaPipe and YOLO. 

  

 MediaPipe and YOLO are widely used frameworks for tasks like 

object detection, pose estimation, and hand tracking. They leverage advanced feature 

extraction techniques to analyze and process visual data effectively. 

  



 
 

14 

 In MediaPipe, which is a popular framework for real-time perception 

tasks, CNNs are often employed to extract features from input images or video frames. 

These features are then used for tasks such as hand tracking, pose estimation, and facial 

recognition. The hierarchical features learned by CNNs through convolutional layers 

enable accurate and efficient detection and tracking of objects and body parts. 

  

 YOLO, which is an efficient object detection framework, utilizes 

CNNs to extract features from images or video frames. These features are then processed 

to detect and classify objects in real-time. YOLO's architecture is optimized for speed 

and accuracy, making it suitable for applications requiring fast and precise object 

detection. 

  

 In both MediaPipe and YOLO, the choice of feature extraction method 

depends on the specific task requirements, computational resources, and desired level 

of accuracy. While CNNs offer powerful feature extraction capabilities, they may 

require significant computational resources and may overfit with limited data. On the 

other hand, techniques like PCA and LDA provide dimensionality reduction and 

classification capabilities but may not capture complex spatial hierarchies present in 

images as effectively as CNNs. 

 

 2.3.4.2 Feature Classification Methods 

 

 SVM: SVMs are find the optimal hyperplane for classifying data into 

different categories. They are effective in high-dimensional spaces and are used for both 

classification and regression tasks. 

 

 ANNs: An ANN consists of interconnected layers of neurons that can 

learn complex patterns in data. They are highly flexible and can be adapted for various 

classification tasks.  
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 KNN: KNN is a simple, instance-based learning algorithm that 

classifies data points based on the majority class of its k-nearest neighbors. It is easy to 

implement and effective for small datasets. 

  

 SVM offers robust classification in high-dimensional spaces but can 

be sensitive to the choice of kernel and parameters. ANN, which includes deep neural 

networks, provides flexibility and can capture complex patterns; however, it requires 

large amounts of labeled data and substantial computational resources for training. KNN 

is simple and effective for small datasets but can be computationally intensive during 

inference and is sensitive to noise. Each method has its advantages and limitations in 

feature classification. 

 

2.4 Action Recognition  

 

2.4.1 Action Recognition 

 

Action recognition, a pivotal domain within computer vision, has witnessed 

substantial evolution over distinct phases, each characterized by diverse methodologies 

and approaches. In its nascent stages, researchers predominantly embraced conventional 

techniques such as Improved Dense Trajectories (IDT) Xu, Zhou, Yuan and Huang 

(2021) examined relying on manually engineered features and traditional machine 

learning for classification. While intuitive, these methods faced limitations in adapting 

to intricate scenarios and diverse movements. 

 

The advent of deep learning has ushered in a new era for action recognition, 

with 2D CNNs standing out as a pivotal technology. Researchers have effectively 

utilized CNNs to extract spatial features from video frames, thereby significantly 

improving the precision in recognizing intricate movements. However, the intrinsic 

focus of 2D CNNs on static images imposes limitations on their ability to model 

temporal information, Wang, Lu, Jin and Hu (2022) examined, particularly in the 

context of actions characterized by dynamic variations. To address this, the integration 

of 2D CNNs with temporal image sequence processing and analysis proves instrumental, 
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synergistically enhancing the method's capability to capture and interpret temporal 

dynamics. This combined approach, leveraging both spatial and temporal information, 

stands as a robust strategy for achieving more nuanced and accurate action recognition, 

especially in scenarios involving dynamic variations. 

 

In action recognition, 3D CNNs excel in capturing temporal dynamics for 

weightlifting, while Two-Stream Networks concurrently process RGB and optical flow 

streams, adapting to complex scenarios. Their practical adoption varies, with ongoing 

refinement for optimal performance in weightlifting studies. 

  

Feichtenhofer, Pinz and Wildes (2016) examined the practical adoption of 

these methodologies using multiple methods, noting that the choice of methodology 

varies based on the specific requirements of the recognition task and the intricacies of 

weightlifting movements. Researchers and practitioners leverage these approaches in 

diverse applications, each offering a unique set of advantages and challenges. In this 

research, 2D CNNs with temporal sequence analysis will be predominantly leveraged, 

showcasing a dynamic interplay that reflects ongoing exploration and refinement to 

tailor these methodologies for optimal performance in weightlifting studies. 

 

 2.4.1.1 Time Series Analysis 

 

 Time Series Analysis is a statistical technique that deals with time-

ordered data. Its primary goal is to understand the underlying structure and patterns 

within the data to make forecasts, detect anomalies, or extract meaningful insights. Time 

series data are typically collected at successive points in time, spaced at uniform 

intervals, and can be represented as a sequence of data points indexed in time order. 

Action recognition integrates spatial features and is geared towards understanding 

dynamic activities in video, whereas time series analysis is more focused on uncovering 

temporal patterns and making predictions based on numerical time-ordered data. 
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 2.4.1.2 Processing  of Action Recognition and Time Series  

 

 Action recognition involves collecting video data containing various 

actions, preprocessing it to reduce noise and normalize frames, and then extracting 

spatial and temporal features using algorithms like CNNs or Optical Flow. These 

features are classified using machine learning or deep learning models such as 2D CNNs, 

3D CNNs, LSTMs (Donahue et al., 2015; Feichtenhofer et al.,2016), or Two-Stream 

Networks (Simonyan & Zisserman, 2014). The results are refined in the post-processing 

step to enhance accuracy.  

 

 Time series analysis involves collecting sequential data points over 

time, preprocessing to clean and prepare the data, and extracting meaningful features 

using statistical methods like Fourier Transform and Wavelet Transform. Base above, 

Aralimarad, Meena and Mallapur (2020) examined, Models such as ARIMA, LSTM, 

RNN, or TCNs are then applied for forecasting or pattern detection, including 

programmatic logic for decision-making, followed by post-processing to analyze, 

validate, and refine the model outputs. 

 

2.4.2  Types of Action Recognition 

 

 2.4.2.1 Direct Video-based for Action Recognition 

 

 3D CNNs: 3D CNNs directly process video data by convolving over 

spatial and temporal dimensions, allowing them to capture both spatial and temporal 

features. This method analyzes motion patterns and recognizes actions directly from 

video sequences. The output of 3D CNNs includes action labels for classification or 

features describing specific actions in video segments, providing insights into the 

recognized actions within the video. 

 

 Two-Stream Networks: Two-Stream Networks simultaneously 

process RGB video frames and optical flow data. By utilizing parallel streams, they 

capture both spatial and temporal information, enabling a comprehensive analysis of 
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motion patterns in videos. The output of Two-Stream Networks consists of action labels 

for classification or features describing specific actions in video segments, offering a 

detailed understanding of the actions present in the video, incorporating both spatial and 

temporal information. 

 

 Improved Dense Trajectories (IDT): IDT extracts dense trajectories 

from video sequences and analyzes motion patterns using handcrafted features such as 

optical flow, HOG, and HOF. This method focuses on capturing detailed motion 

trajectories to characterize different actions present in the video. The output of IDT is 

motion trajectory features used as inputs to subsequent classifiers for action recognition. 

These features provide detailed information about the motion patterns within the video, 

aiding in the accurate identification of actions. 

 

 2.4.2.2 Feature Extraction of Sequence Analysis for Action 

Recognition 

 

 Optical Flow: Optical flow detects motion between consecutive 

frames in a video, extracting motion patterns. It directly analyzes the pixel-level changes 

between frames to identify movement, providing valuable insights into object motion 

within the video. The output comprises optical flow features capturing the motion of 

objects, which serve as a basis for further sequence analysis. 

  

 Improved Dense Trajectories (IDT): IDT extracts dense trajectories 

from video sequences and integrates them with handcrafted features such as optical flow, 

HOG, and HOF. By combining multiple motion descriptors, IDT provides a 

comprehensive representation of motion trajectories in the video. The output includes 

trajectory features containing information about motion trajectory, direction, and speed, 

facilitating detailed analysis of motion patterns. 

  

 CNN: CNNs extract spatial features from single-frame images or 

image sequences by applying convolutional and pooling operations. They analyze the 

visual content of video frames to capture essential features such as edges, textures, and 
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shapes. The output consists of image features representing various visual elements 

present in the video frames, enabling subsequent sequence analysis based on these 

extracted features. 

  

 Two-Stream Networks: Two-Stream Networks combine RGB images 

with optical flow features to process both spatial and motion information in videos. By 

incorporating information from both streams, these networks capture a comprehensive 

understanding of video content. The output comprises features that integrate spatial and 

motion information, providing a holistic representation of the video content for further 

sequence analysis. 

  

 Handcrafted Features: Handcrafted features such as HOG and HOF 

describe motion and texture information in video frames using predefined algorithms. 

These features capture specific characteristics of the video content, such as object 

motion and visual patterns. The output includes handcrafted features utilized for 

subsequent classification or recognition tasks, offering valuable insights into the visual 

attributes of the video content. 

 

 2.4.2.3 Further Sequence Analysis for Action Recognition 

 

 LSTM Networks: LSTM networks process feature data extracted from 

images or videos, specializing in modeling long-term dependencies within time 

sequences. Their architecture, comprising memory cells and gating mechanisms, allows 

them to retain and utilize information over extended periods, enabling the capture of 

complex temporal patterns in video data. The outputs of LSTM networks, such as time 

sequence predictions, classification labels, or descriptions of specific action occurrence 

times within the video data, offer valuable insights into the temporal dynamics and 

patterns present in the video sequences. 

  

 Temporal Convolutional Networks (TCNs): TCNs focus on 

processing feature data extracted from videos or images, leveraging one-dimensional 

convolutions to capture patterns within time sequences effectively. By utilizing a series 
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of convolutional layers, TCNs extract hierarchical features from the input data, enabling 

robust modeling of temporal relationships. The outputs of TCNs, including time 

sequence predictions, classification labels for different actions, or descriptions of action 

occurrence times within the video data, facilitate the understanding and interpretation 

of temporal patterns and dynamics encoded in the video sequences. 

  

 Recurrent Neural Networks (RNNs):  RNNs, including variants like 

GRUs, excel at processing feature data extracted from videos or images and are tailored 

to model temporal dynamics within time sequences. By maintaining internal state 

representations that evolve over time, RNNs capture sequential patterns and 

dependencies efficiently, enabling the extraction of context and temporal relationships. 

The outputs of RNNs, such as time sequence predictions, classification labels for 

different actions, or descriptions of action occurrence times within the video data, 

provide valuable insights into the temporal evolution of events and actions captured in 

the video sequences. 

 

 2.4.2.4 Integrated Approach for Action Recognition 

 

 An integrated approach leveraging open-source components such as 

MediaPipe and YOLO for both direct video-based action recognition and feature 

extraction for further sequence analysis. This approach combines the functionalities and 

benefits of Direct Video-based Action Recognition and Feature Extraction for Further 

Sequence Analysis, providing a comprehensive solution for processing video data. 

  

 Utilizing MediaPipe and YOLO, extract rich spatial and temporal 

features from video data. MediaPipe offers efficient solutions for pose detection, hand 

tracking, and facial recognition, providing detailed information about human actions 

and interactions within the video frames. YOLO, on the other hand, facilitates object 

detection and tracking, enabling the identification and localization of relevant objects or 

subjects in the video scenes. By integrating these components, achieve robust feature 

extraction, capturing both high-level semantics and fine-grained details from the video 

content. 
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 The extracted features are then passed through a Features Dataset 

Logical Analysis Layer (FDLAL), which functions similarly to LSTM and RNNs but 

involves code logic for analysis. The FDLAL processes the sequential feature data, 

capturing temporal dependencies and patterns present in the video sequences. By 

leveraging code logic,  enhance the sequence analysis process, enabling dynamic 

decision-making based on predicted action sequences and contextual insights derived 

from the video data. 

  

2.4.3 Characters of Types of Action Recognition 

  

 2.4.3.1 Direct Video-based for Action Recognition 

 

 Characters include: 1) Processes video data directly, which simplifies 

the workflow by eliminating the need for additional feature extraction steps. 2) Methods 

like 3D CNNs or Two-Stream Networks are capable of capturing both spatial and 

temporal features in videos, leading to improved accuracy in action recognition. 3) Can 

directly output classification labels or features of video segments, enabling rapid 

identification and analysis of specific actions. 4) High computational costs are incurred 

when dealing with large-scale video data, requiring significant computing resources and 

time. 5) For complex behaviors like weightlifting, deeper video analysis and model 

optimization may be necessary to achieve satisfactory results. 6) Susceptibility to the 

influence of video quality and environmental factors, necessitating high-quality data for 

accurate recognition. 

  

 2.4.3.2 Feature Extraction of Sequence Analysis 

 

 Characters include: 1) Extracts video features using methods like 

optical flow or Improved Dense Trajectories (IDT), capturing richer spatial and 

temporal information for a more comprehensive understanding of video content. 2) 

Allows for the extraction of different features tailored to different types of behaviors, 

enhancing the flexibility and applicability of action recognition methods. 3) Suitable for 
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scenarios requiring further analysis of time sequence data, such as determining action 

frequency, speed, duration, etc. 4) Requires additional feature extraction steps, which 

increases the complexity of the processing workflow and computational costs. 5) High 

requirements for algorithm and parameter selection during feature extraction, 

potentially requiring tuning for different datasets and scenarios. 6) The quality and 

effectiveness of feature extraction are influenced by factors such as algorithm selection 

and parameter settings, necessitating careful design and debugging to ensure optimal 

performance. 

 

 2.4.3.3 Integrated Approach for Action Recognition 

 

 Characters include: 1) Comprehensive Solution: By leveraging open-

source components such as MediaPipe and YOLO, the approach combines the 

functionalities of direct video-based action recognition and feature extraction for 

sequence analysis. This integration provides a holistic solution for processing video 

data, addressing both spatial and temporal aspects of action recognition. 2) Rich Feature 

Extraction: Utilizing MediaPipe and YOLO enables the extraction of rich spatial and 

temporal features from video data. MediaPipe offers efficient solutions for pose 

detection, hand tracking, and facial recognition, while YOLO facilitates object detection 

and tracking. This comprehensive feature extraction captures both high-level semantics 

and fine-grained details from the video content, enhancing the analysis capabilities. 3) 

Robust Sequence Analysis: The extracted features are passed through a Features Dataset 

Logical Analysis Layer (FDLAL), which  involves code logic for analysis. This layer 

captures temporal dependencies and patterns present in the video sequences, enabling 

robust sequence analysis. By leveraging code logic, the approach enhances the sequence 

analysis process, facilitating dynamic decision-making based on predicted action 

sequences and contextual insights derived from the video data. 

 

 The integrated approach offers a versatile and effective solution for 

video-based action recognition and sequence analysis, providing enhanced feature 

extraction and robust temporal analysis capabilities. 
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2.5 Skeletal Recognition 

 

Skeletal recognition has evolved as a critical component in the trajectory of 

action recognition, providing a profound understanding of human movements. In the 

early stages, Improved Dense Trajectories (IDT) and traditional machine learning 

techniques were primary tools for action recognition, yet they faced challenges in 

capturing the intricate dynamics of skeletal movements. 

  

The paradigm shifted with the advent of deep learning, ushering in innovative 

approaches to skeletal recognition. A notable contribution came from Wei, Ramakrishna,  

Kanade and Sheikh (2016), who introduced a model leveraging Convolutional Pose 

Machines (CPM) for accurate human pose estimation, signifying a significant leap in 

sophisticated skeletal representation. 

  

Advancements continued with the exploration of recurrent neural networks 

(RNNs) and long short-term memory networks (LSTMs) in skeletal modeling. Ren, Liu,  

Ding and Liu (2024) and Saoudi, Jaafari and Andaloussi (2023) demonstrated the 

effectiveness of an LSTM-based approach in capturing temporal dependencies, 

underscoring the importance of sequential skeletal information in action recognition. 

  

The inclusion of 3D pose estimation techniques, exemplified by Berretti et al. 

(2018), added a layer of depth to skeletal recognition. This advancement enabled models 

to comprehend not only spatial configurations but also the three-dimensional aspects of 

human poses. 

  

Recent strides in skeletal recognition involve the fusion of skeletal data with 

RGB information. Kong, Deng and Jiang (2021) showcased a two-stream network that 

effectively integrated skeletal and RGB features, contributing to enhanced action 

recognition. 

  

The advent of frameworks such as MediaPipe and YOLO has introduced new 

dimensions to skeletal recognition. MediaPipe provides a comprehensive solution for 
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face, hand, and pose detection, while YOLO offers real-time object detection 

capabilities, influencing the fusion of skeletal and visual information in action 

recognition systems. 

  

In essence, the evolution of skeletal recognition has transitioned from 

traditional methods to sophisticated deep learning approaches, progressively refining 

the understanding of human actions through nuanced skeletal representations. 

  

2.5.1 Characteristics of Skeletal Recognition 

 

The characteristics of skeletal behavior recognition encompass several key 

features that contribute to the effectiveness of this approach: 1) Temporal Dynamics: 

Skeletal behavior recognition excels in capturing the temporal dynamics of human 

movements, allowing for a detailed analysis of actions unfolding over time. 2) Spatial 

Configuration: The method provides a comprehensive understanding of the spatial 

configuration of human poses, enabling precise recognition and interpretation of 

intricate movements. 3) Depth Information: With the integration of 3D pose estimation 

techniques, skeletal behavior recognition incorporates depth information, enhancing the 

model's ability to perceive the three-dimensional aspects of human poses. 4) Sequential 

Dependency: Models leveraging recurrent neural networks (RNNs) and long short-term 

memory networks (LSTMs) demonstrate a capacity to understand sequential 

dependencies in skeletal data, crucial for accurate action recognition. 5) Integration with 

RGB Data: Recent advancements involve the fusion of skeletal data with RGB 

information, offering a holistic approach to action recognition by combining the 

strengths of both modalities. 

 

These characteristics collectively make skeletal behavior recognition a 

powerful and nuanced approach, particularly in the context of weightlifting studies 

where understanding both spatial and temporal aspects of movements is essential. 
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 2.5.2 Benefits of MediaPipe Skeletal Recognition 

  

MediaPipe brings several benefits to the field of skeletal behavior recognition, 

making it a valuable tool for comprehensive action analysis: 1) Multi-Modal 

Capabilities: MediaPipe supports multi-modal skeletal tracking, allowing for the 

simultaneous analysis of various body parts and movements. This capability enhances 

the richness of skeletal data for a more detailed understanding of actions. 2) Integration 

with Diverse Applications: The versatility of MediaPipe allows for seamless integration 

with diverse applications. Whether applied to fitness tracking, gesture recognition, or 

interactive experiences, MediaPipe's capabilities extend beyond skeletal behavior 

recognition, adding value to a range of domains. 3) Community Support and 

Development: MediaPipe benefits from an active community and ongoing development 

efforts. This ensures the continuous improvement of the framework, with updates, new 

features, and optimizations that contribute to its effectiveness in skeletal behavior 

recognition. 4) Cross-Platform Compatibility: MediaPipe offers cross-platform 

compatibility, supporting applications across different devices and operating systems. 

This flexibility enhances the accessibility and usability of the framework in various 

settings. 

  

2.6 Object Recognition 

 

Object recognition has evolved as a critical facet in the landscape of action 

recognition, playing a pivotal role in understanding weightlifting movements and 

enhancing the overall comprehension of complex scenarios. In the early stages of 

research, authors like LeCun et al. (1998) and Viola and Jones (2001) laid the 

groundwork for object recognition with landmark works on CNNs and cascaded 

classifiers. 

  

Over time, the domain has witnessed a paradigm shift towards more 

sophisticated deep learning techniques, particularly in the context of weightlifting 

studies. Renowned authors such as Krizhevsky et al. (2017) introduced the 

groundbreaking AlexNet, significantly advancing the capabilities of CNNs in object 
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recognition tasks. This marked a turning point, as the enhanced depth and complexity 

of deep neural networks proved instrumental in discerning and classifying objects within 

weightlifting scenes. 

  

The advent of region-based CNNs (R-CNNs) Girshick (2015) and their 

subsequent improvements Faster R-CNNs Ren et al.  (2016), brought about substantial 

improvements in both accuracy and efficiency. These approaches revolutionized object 

recognition by introducing region proposal networks, allowing for selective and focused 

analysis of specific regions in images, a crucial aspect in weightlifting scenarios where 

the emphasis is on key objects like barbells and body postures. 

  

Noteworthy contributions by authors like Redmon, Divvala, Girshick and 

Farhadi (2016) with the introduction of YOLO models and the subsequent evolution to 

YOLOv3 Redmon and Farhadi (2018) further streamlined object detection tasks. YOLO 

models, with their real-time processing capabilities, proved valuable in dynamically 

recognizing and tracking relevant objects during weightlifting activities. 

  

The field of object recognition in weightlifting studies has recently witnessed 

the integration of advanced frameworks like MediaPipe, as demonstrated by authors 

such as Lugaresi et al. (2019). MediaPipe, with its multi-modal skeletal tracking and 

object recognition capabilities, adds an additional layer of sophistication to the analysis, 

enabling a more holistic understanding of weightlifting scenes. 

  

2.6.1 Benefits of Yolo Object Recognition 

 

YOLO object recognition within the context of weightlifting studies present 

notable features that contribute to its effectiveness in identifying and analyzing objects 

such as barbells and body postures. These characteristics include: 1) Bounding Box 

Predictions: YOLO provides accurate bounding box predictions around detected objects, 

enabling precise localization. This characteristic is particularly valuable in weightlifting 

scenarios where identifying the exact location of objects like barbells is crucial for a 

detailed understanding of the lifting process. 2) Multi-Class Recognition: YOLO 
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supports multi-class object recognition, allowing the model to simultaneously identify 

and classify various objects within the scene. In weightlifting studies, this feature 

enables the recognition of different components such as barbells, body positions, and 

other relevant entities. 3) Robustness to Object Size Variations: YOLO exhibits 

robustness in handling variations in object sizes. In the context of weightlifting, where 

the size and position of barbells and body postures can vary, this characteristic ensures 

that the model can adapt to diverse scenarios commonly encountered in training or 

competition settings. 4) Accuracy Estimation: YOLO provides mechanisms for 

accuracy estimation, allowing practitioners to assess the reliability of object recognition 

results. This characteristic is essential in weightlifting studies, where precise 

identification of barbells, body postures, and other elements contributes to the accuracy 

of performance analysis. 5) Customization Capabilities: YOLO offers customization 

options, enabling researchers and practitioners to tailor the model to specific 

requirements of weightlifting scenarios. This includes the ability to fine-tune the model 

on a dataset that reflects the nuances and variations present in weightlifting activities, 

enhancing the model's adaptability to the unique characteristics of this domain. 

 

 

 

 

 

 



 

Chapter 3 

  

Research Methodology 

  

3.1 Introduction 

 

In the realm of weightlifting behavior analysis, the determination of snatch 

weightlifting success requires a multifaceted approach that integrates advanced machine 

learning techniques and pose landmark features. To provide insight about the steps used 

throughout this process, the steps to determine the success of snatch weightlifting are 

illustrated in Figure 3.1. 

 

 

Figure 3.1 Steps to determine the success of snatch weightlifting 
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Figure 3.1 showed the method for determining success in snatch weightlifting. 

First, extract images from a video. The pose landmark features were extracted. A barbell 

was detected and the barbell features consisting of 2 points on it were extracted. The 

pose landmark features and the barbell features were combined and used to classify the 

snatch weight lifting phases. After a sequence of weight lifting phases was determined, 

the phases were corrected or aligned using rules. On the other hand, the distance between 

hands and a barbell was calculated from the features extracted from each image.  Finally, 

the distances of the hands from the barbell and the aligned phase sequence were used to 

determine success in snatch weightlifting. 

To create more understanding, the steps to detect a barbell, classify snatch 

phases using machine learning classifiers, and determine snatch weightlifting success 

were shown in Figures 3.2–3.4. 

 

 
Figure 3.2 Steps to detect a barbell 
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Figure 3.2 showed the steps for detecting a barbell using the YOLO object 

detection model. First, frames were extracted from weightlifting videos and converted 

into still images. Then these images were annotated with bounding boxes to label the 

barbell. A YOLO model’s configuration file was edited to set training parameters, and 

the model was trained using the annotated images. Once trained, the model could detect 

barbells in the videos. Fanally, the features, which were the coordinates of two points 

on the left and right sides of the barbell, were computed from the bounding box. 

 

 
Figure 3.3 Steps to classify snatch phases using machine learning classifiers 

 

Figure 3.3 illustrated the steps to classify snatch phases using SVM and ANN 

classifiers. Initially, images were extracted from weightlifting videos, and features such 

as pose landmarks and points on the barbell were detected and computed. These features 

were fed into the SVM and ANN classifiers. The outputs from these classifiers were 

used to determine the sequence of snatch phases, which enabled a detailed analysis of 

the weightlifting process. 
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Figure 3.4 Steps to determine snatch weightlifting success 

 

Figure 3.4 showed how to use video analysis to determine the success of a 

snatch weightlifting attempt. The aligned sequence of snatch phases, the shortest 

distance between hands and a barbell were used as features to determine snatch 

weightlifting success. The process involved verifying the holding of the sixth phase for 

at least one second, ensuring the completion of all six phases in order, and ensuring 

proper barbell handling.Additional checks included confirming the sixth phase's holding 

time and checking a barbell's slip. Each criterion helped assess whether the lift was 

successful. 

 

3.2 Study Design 

 

The research adopted a comprehensive methodology, incorporating advanced 

tools and techniques for an in-depth analysis of weightlifting performances. The central 

focus involved the intricate process of classifying weightlifting behaviors, estimating 

datasets for image and feature data models, customizing the YOLO model training 

process, and designing the expansion of feature values. Additionally, the study 

encompassed the design of weightlifting success/failure determination functionalities. 
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Due to the complexity of the research process, the study was divided into two 

main parts: 1) Images and features classification snatch weightlifting: This part of the 

research focuses on classifying weightlifting images and features using various methods. 

The aim was to explore the feasibility of feature classification and provide reliable 

results for distinguishing different phases of the snatch weightlifting. 2) Determining 

the success in snatch weightlifting: Building on the feature classification, this part 

involves researching the factors that determine the success or failure of snatch 

weightlifting attempts. The objective is to develop a robust model that can accurately 

classify and predict successful and failed lifts based on extracted features. 

 

3.2.1 Classification of Images and Features in Snatch Weightlifting 

 

This part of the research focuses on collecting videos from various snatch 

weightlifting and extracting images from these videos. The images were then classified 

into six phases of the snatch lift using two different approaches. The first approach 

involved training CNN models, such as MobileNet and VGG16, for image classification. 

The second approach utilized skeletal recognition and object detection to extract feature 

data, which was then used to train SVM and ANN models for feature classification. This 

will be base for research of determining the success in snatch weightlifting. 

  

3.2.2 Determination of the Success in Snatch Weightlifting 

  

Extract images from video: This step involved capturing individual frames 

from a video recording of snatch weightlifting performances. These frames served as 

the basis for further analysis, allowing researchers to extract key features and 

information from each frame to understand the dynamics of the weightlifting movement. 

  

Extract pose landmark features: Pose landmark features refered to specific 

points or landmarks on the athlete's body that were indicative of their posture and 

movement during the snatch weightlifting competition. These features were extracted 

using tools MediaPipe, which could detect and track key points like joints and limbs 

throughout the video frames. 
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Detect a barbell: In this step, the presence of a barbell in each frame was 

detected using object detection techniques. YOLO was employed for this purpose, 

allowing for accurate identification and localization of the barbell within the frame. 

  

Extract points on the detected barbell: Once the barbell was detected, specific 

points on the barbell were extracted. These points included the positions of the barbell 

2 ending sides relevant landmarks that provided additional information about the 

weightlifting movement. 

  

Classify snatch phases using a machine learning classifier: The extracted pose 

landmark features and barbell features were combined and used as input to a machine 

learning classifier. This classifier was trained to recognize and classify different phases 

of the snatch weightlifting movement based on the features extracted from each frame. 

The classifier assigned a phase class to each frame, indicating the phase of the lift that 

the athlete is currently in. 

  

Phase correction: After the initial classification of snatch weightlift phases, a 

phase alignment process was employed to correct or refine the sequence of classified 

phases. This part involved applying rules or algorithms to ensure that the sequence of 

phases was consistent and accurately reflected the progression of the weightlifting 

movement. 

 

Compute distances between hands and points on the barbell: The distances 

between the athlete's hands and specific points on the barbell were computed using the 

extracted pose landmark features and barbell features. These distances provided 

valuable information about the athlete's grip and positioning relative to the barbell 

throughout the lift. 

 

Determine snatch weightlifting success: Determine snatch weightlifting 

success: The computed distances between hands and points on the barbell, along with 

the aligned phase sequence, were used to determine the success of the snatch 

weightlifting performance. This determination considered the correctness and 
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completeness of the phase sequence, ensuring that all phases are present and in the 

correct order. Additionally, the analysis evaluated whether the duration of the 

weightlifting conforms to regulatory standards, ensuring that the weightlifting was 

performed within the designated time frame. 

  

3.3 Instruments 

 

Adobe Premiere: This video editing tool was essential for clipping and 

preparing complete weightlifting sequences from competition scenes, forming the basis 

of the research dataset. 

 

LabelImg: Used as a marking tool for object recognition, it was employed to 

annotate barbell positions in training images. It was use for training the barbell detection 

model and ensuring accurate object recognition. 

 

MediaPipe: This framework was utilized to extract skeletal features from 

videos, providing a detailed analysis of athletes' movements during the weightlifting 

process. 

 

YOLO: As an object detection tool, YOLO identified and located the barbell 

in the images. This data, combined with skeletal recognition, allowed for accurate 

calculation of distances between the athlete and the barbell, which was essential for 

performance assessment. 

 

Python: Python was chosen as a programming language for integrating various 

components of the research, including object detection and skeletal recognition 

frameworks. Python was also used to write machine learning code necessary for model 

training and testing. 

 

scikit-learn: This additional Python module was used in building the machine 

learning models required for classifying the different phases of snatch weightlifting. 
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3.4 Data Collection 

 

The research involved two main aspects: images and features classification and 

determining the success in snatch weightlifting. To support these studies, three distinct 

datasets were used: 1) Image Classification Dataset: This dataset was based on 50 

successful snatch weightlifting videos and the images extracted from these videos. It 

was used to train image classification models, employing CNNs such as MobileNet and 

VGG16, as well as SVM and ANN for feature classification. 2) Barbell Detection 

Dataset: Comprising 20 successful weightlifting videos and annotated barbell images, 

this dataset was utilized to train the YOLO model for accurate barbell detection in 

various weightlifting scenarios. 3) Success Determination Dataset: The dataset included 

20 weightlifting videos (10 successful and 10 failed videos), as well as the images used 

for training models to classify weightlifting phases and detect barbells. It was used for 

the research and analysis focused on determining the success or failure of snatch 

weightlifting attempts, providing a balanced representation of both outcomes. 

 

These datasets collectively enabled the detailed analysis and model training 

necessary for classifying weightlifting phases and assessing performance outcomes. The 

details were shown in Table 3.1. 
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Table 3.1 Dataset 

No. Dataset Name Description Number of Data 

1 Image Training 

Original data   50 videos 

For training 3644 images 

For testing 1331 images 

2 Feature Extraction 

Original data   50 videos 

For training 3644 images 

For testing 1331 images 

3 Feature Training 

Original data   50 videos 

For training 3644 images 

For testing 1331 images 

4 Barbell Training 

Original data   20 videos 

For training 2078 images 

For testing 4975 images 

5 Success Determination 

Successful videos 10 videos, 1228 

images 

Failed videos 10 videos, 1265 

images 

  

3.4.1 Image Training and Feature Extraction 

 

The initial phase of data collection involved extracting relevant information 

from front-view videos of various weightlifting competitions. A total of 50 successful 

snatch weightlifting videos were selected for analysis. The videos were subjected to 

preprocessing steps, including resizing all frames to a standardized resolution of 

224x224 pixels. This standardization ensured consistency in the dataset, a crucial factor 

for subsequent model training and extraction. 

  

3.4.2 Feature Training 

 

The dataset comprised 3,644 images extracted from the training videos for 

training model, with a balanced distribution across the six predefined phases. 

Additionally, a separate dataset for testing purposes was created, consisting of 1,331 

images from 16 successful snatch weightlifting videos. 
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3.4.3 Barbell Training 

 

The YOLO model for barbell detection was trained and optimized using a 

specially created dataset. The 2,078 images in the dataset were taken from various 

weightlifting frames extracted from videos. Each image was carefully annotated to 

highlight the precise position of the barbell. 

This specialized dataset played a pivotal role in enhancing the YOLO model's 

proficiency in recognizing barbells within the weightlifting context. By training on this 

dedicated dataset, the model gained the capability to accurately detect and locate 

barbells in real-world weightlifting scenarios. 

  

3.4.4 Success Determination for Weightlifting Sequence Videos  

 

In preparation for weightlifting sequence analysis, two subsets of videos were 

meticulously selected: 1) Successful videos subset: Comprising 10 videos, this subset 

contributed a total of 1228 images for analysis. These videos captured successful 

executions of weightlifting movements, providing insights into well-performed actions. 

2) Failed videos subset: Consisting of 10 videos capturing unsuccessful attempts, this 

subset contributed a total of 1265 images. The inclusion of failed attempts offered a 

comprehensive understanding of the challenges and difference in weightlifting motions. 

 

The combination of these subsets formed a robust dataset for weightlifting 

sequence analysis, ensuring a balanced representation of both successful and 

unsuccessful scenarios. This diversity was essential for a nuanced exploration of 

temporal dynamics and accurate classification during subsequent analysis. 

 

3.5 Data Analysis 

 

3.5.1 Algorithm Parameters for Weightlifting Phase Classification 

 

This section first introduced the parameter configuration of the algorithm 

model for snatch phase classification, then it expanded on the study of determining 
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whether weightlifting is successful or unsuccessful. The classification of the snatch 

phase is a crucial basis for determining the success or failure of weightlifting.  

 

Including: 1) SVM parameters: Used a linear kernel function for its 

classification. 2) ANN architecture: The ANN consisted of an input layer, a hidden layer 

with 128 neurons and ReLU activation, and an output layer with 6 neurons and softmax 

activation. 3) CNN Architecture: The CNNs comprised of 3 convolution layers. Each 

layer used 32 filters to extract image features. The flatten layer transformed the features 

into a one-dimensional vector passed through the ANN. The ANN, which was a part of 

the CNN, consisted of 64 hidden nodes and 6 output nodes. 4) ResNet50 Architecture: 

ResNet-50 was utilized. The top section of the ResNet-50 featured a global average 

pooling layer, a dense layer with 64 hidden nodes, a 0.2 dropout layer, a dense layer 

with 64 hidden nodes and a ReLU activation function, and a 0.2 dropout layer. 5) 

MobileNet Architecture: MobileNetV3 was implemented. The top section of the 

MobileNetV3 featured a global average pooling layer, a dense layer with 64 hidden 

nodes, a 0.2 dropout layer, a dense layer with 64 hidden nodes and a ReLU activation 

function, and a 0.2 dropout layer. 

 

Based on the above models, weightlifting behavior classification was achieved. 

The next part of the research focused on classifying weightlifting video sequences to 

identify successful and failed lifts. 

 

3.5.2 Extract Images from a Video 

 

Images were extracted using 15 Olympic snatch weightlifting videos. Then 

they were resized to 224 x 244 pixels. The resized images were used as a source to 

extract MediaPipe features.  

  

3.5.3 Extract Pose Landmark Features 

 

In the feature extraction, MediaPipe was used to extract pose landmark features 

from images (Kukil, 2021). The features and their descrptions were shown in Table 3.2. 
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Table 3.2 Features obtained from MediaPipe and their descriptions 

No. MediaPipe Descriptions 

1 NOP_X Nose Positions Value in X Axis 

2 NOP_Y Nose Positions Value in Y Axis 

3 LEIP_X Left Eye Inner Positions Value in X Axis 

4 LEIP_Y Left Eye Inner Positions Value in Y Axis 

5 LEP_X Left Eye Positions Value in X Axis 

6 LEP_Y Left Eye Positions Value in Y Axis 

7 LEOP_X Left Eye Outer Positions Value in X Axis 

8 LEOP_Y Left Eye Outer Positions Value in Y Axis 

9 REIP_X Right Eye Inner Positions Value in X Axis 

10 REIP_Y Right Eye Inner Positions Value in Y Axis 

11 REP_X Right Eye Positions Value in X Axis 

12 REP_Y Right Eye Positions Value in Y Axis 

13 REOP_X Right Eye Outer Positions Value in X Axis 

14 REOP_Y Right Eye Outer Positions Value in Y Axis 

15 LEARP_X Left Ear Positions Value in X Axis 

16 LEARP_Y Left Ear Positions Value in Y Axis 

17 REARP_X Right Ear Positions Value in X Axis 

18 REARP_Y Right Ear Positions Value in Y Axis 

19 MLP_X Mouth Left Positions Value in X Axis 

20 MLP_Y Mouth Left Positions Value in Y Axis 

21 MRP_X Mouth Right Positions Value in X Axis 

22 MRP_Y Mouth Right Positions Value in Y Axis 

23 LSP_X Left Shoulder Positions Value in X Axis 

24 LSP_Y Left Shoulder Positions Value in Y Axis 

25 RSP_X Right Shoulder Positions Value in X Axis 

26 RSP_Y Right Shoulder Positions Value in Y Axis 

27 LEP_X Left Elbow Positions Value in X Axis 

28 LEP_Y Left Elbow Positions Value in Y Axis 

29 REP_X Right Elbow Positions Value in X Axis 

30 REP_Y Right Elbow Positions Value in Y Axis 

31 LWP_X Left Wrist Positions Value in X Axis 

32 LWP_Y Left Wrist Positions Value in Y Axis 

33 RWP_X Right Wrist Positions Value in X Axis 

34 RWP_Y Right Wrist Positions Value in Y Axis 

35 LPP_X Left Pinky Positions Value in X Axis 

36 LPP_Y Left Pinky Positions Value in Y Axis 

37 RPP_X Right Pinky Positions Value in X Axis 

38 RPP_Y Right Pinky Positions Value in Y Axis 

39 LIP_X Left Index Positions Value in X Axis 

40 LIP_Y Left Index Positions Value in Y Axis 

41 RIP_X Right Index Positions Value in X Axis 
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Table 3.2 Features obtained from MediaPipe and their descriptions (cont.) 
No. MediaPipe Descriptions 

42 RIP_Y Right Index Positions Value in Y Axis 

43 LTP_X Left Thumb Positions Value in X Axis 

44 LTP_Y Left Thumb Positions Value in Y Axis 

45 RTP_X Right Thumb Positions Value in X Axis 

46 RTP_Y Right Thumb Positions Value in Y Axis 

47 LHP_X Left Hip Positions Value in X Axis 

48 LHP_Y Left Hip Positions Value in Y Axis 

49 RHP_X Right Hip Positions Value in X Axis 

50 RHP_Y Right Hip Positions Value in Y Axis 

51 LKP_X Left Knee Positions Value in X Axis 

52 LKP_Y Left Knee Positions Value in Y Axis 

53 RKP_X Right Knee Positions Value in X Axis 

54 RKP_Y Right Knee Positions Value in Y Axis 

55 LAP_X Left Ankle Positions Value in X Axis 

56 LAP_Y Left Ankle Positions Value in Y Axis 

57 RAP_X Right Ankle Positions Value in X Axis 

58 RAP_Y Right Ankle Positions Value in Y Axis 

59 LHP_X Left Heel Positions Value in X Axis 

60 LHP_Y Left Heel Positions Value in Y Axis 

61 RHP_X Right Heel Positions Value in X Axis 

62 RHP_Y Right Heel Positions Value in Y Axis 

63 LFIP_X Left Foot Index Positions Value in X Axis 

64 LFIP_Y Left Foot Index Positions Value in Y Axis 

65 RFIP_X Right Foot Index Positions Value in X Axis 

66 RFIP_Y Right Foot Index Positions Value in Y Axis 

 

3.5.4 Detect a Barbell 

  

The Yolo 7.0 algorithm was utilized to identify and locate a barbell. The 

outcome consisted of four (x,y) coordinates representing the corners of a rectangle that 

encloses the identified barbell (Kathuria, 2022; Chernytska, 2022). Figure 3.5 

demonstrates an instance of barbell detection using Yolo. 
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Figure 3.5 Detected barbell 

  

3.5.5 Extract Points on the Detected Barbell  

  

After acquiring the container that outlines the perimeter of a barbell. Two 

points are derived from the four coordinates (x,y) of the box.   

  

The YOLO detector outputed a bounding box that consisted of four absolute 

position coordinates. These coordinates reflected the positions of the top-left and 

bottom-right corners of the bounding box. Two points were derived from the four 

coordinates (x,y) of the box.  In order to determine the midpoints of the left and right 

sides of a "barbell" shaped bounding box, it began by identifying the corners of the 

bounding box. Next, calculated the midpoint on the left side by taking the average of 

the coordinates of the two left corners. Similarly, calculated the midpoint on the right 

side by averaging the coordinates of the two right corners by using the following 

algorithm.  

The steps include: 1) Extract the identified items from the YOLO detection 

data and locate the specific object labeled as "barbell". 2) Retrieve the precise positional 

coordinates of the four corners of the bounding box that encompasses the "barbell" 

object. 3) Determine the coordinates that lie exactly in the middle between the left and 

right coordinates of the bounding box of the "barbell". 
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Figure 3.6 Compute P1 and P2 points from a barbell box 

 

The midpoints between the left and right coordinates of the "barbell" using the 

following method. Given: The points A(Xa,Ya), B(Xb,Yb), C(Xc,Yc) and D(Xd,Yd) 

were absolute position coordinates of the four corners of the bounding box surrounding 

the "barbell" object. The midpoints P1 and P2 between the left and right coordinates of 

the "barbell" were P1(|Xc-Xa|/2,|Yc-Ya|/2) and P2(|Xd-Xb|/2,|Yd-Yb|/2).  

 

The barbell features consisting of the left and right coordinates of the midpoints 

P1 and P2 (LBX, LBY, RBX and RBY) were described in Table 3.3. 

  

Table 3.3 Barbell features 

No. Ballbell features Descriptions 

1. LBX Left Barbell x axis value 

2. LBY Left Barbell y axis value 

3. RBX Right Barbell x axis value 

4. RBY Right Barbell y axis value 

 

3.5.6 Classify Snatch Phases Using a Machine Learning Classifier 

 

The 70 features (33*2+2*2 features), which consisted of x axis and y axis of 

33 skeleton landmarks and 2 barbell position points, were classified using SVM and 

ANN into six phases(Makdoun, 2022).   
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3.5.7 Correct Phases  

 

The system classified a sequence of images extracted from a video into six 

phases.  However, in fact, some errors were found in the phase classification results. 

Therefore, the rules shown in Table 3.4 were applied to correct a sequence of classified 

phases. According to the rules, the five consecutive classified phases were used as 

information to determine the probable phases.  

 

Table 3.4 Rules applied to correct sequences of phases 

  Same 

  Different 

  Fixed 

  

No. 
Classified phases Corrected phases 
Frm t Frm t+1 Frm t+2 Frm t+3 Frm t+4 Frm t Frm t+1 Frm t+2 Frm t+3 Frm t+4 

1                     

2                     

3                    

4                     

5                     

6                     

7                     

8                     

9                     

10                     

11                     

12                     

13                     

14                     

15                     

16                     

17                     

18                     

19                     

20                     

21                     

22                     

23                     

24                     

25                     

26                     
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Table 3.4 Rules applied to correct sequences of phases (cont.) 

No. 
Classified phases Corrected phases 
Frm t Frm t+1 Frm t+2 Frm t+3 Frm t+4 Frm t Frm t+1 Frm t+2 Frm t+3 Frm t+4 

27           

28                     

29                     

30                     

31                     

32                     

Remark: Frm t was the phase classification result of the frame or image at time t. 

 

The algorithm to correct phases was explained as follows: 

Given 

P : A sequence of classified weightlifting phases (p0, p1, p2, … pT) 

T: Last time that the phase was classified 

i: Classified weightlifting phase number 

for i=0 to T-4  

Apply the rules to correct the classified weightlifting phases pi to pi+4 

 

The phase correction process aimed to resolve classification errors within the 

weightlifting video sequences. After correction, the corrected phase sequence was used 

to determine success in weightlifting. 

 

3.5.8 Compute distances between hands and points on a barbell 

 

The system also used the distances between hands and points on a barbell to 

determine whether a lifting was successful or not. The method for calculate the distances 

between hands and points on a barbell is shown in Figure 3.7. 
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A B

P

E

 
Figure 3.7  Compute the distance between a hand and a barbell 

 

The distances between hands and points on a barbell were computed using the 

following steps: 

Find a linear equation: ax+by+c = 0 given two points, A(x1, y1) and B(x2, y2) 

by using the following equation. 

(y1 – y2)x + (x2 – x1)y + (x1y2 – x2y1) = 0    (3-1) 

 

Find a distance PE: The distance between the line ax+by+c = 0 and the point 

PE (x3, y3), where a, b and c are real numbers and both a and b cannot be zero, can be 

calculated using the following equation. 

𝑃𝐸 =
|a𝑥3+b𝑦3+c|

√𝑎2+𝑏2
       (3-2) 

 

Calculate a distance AB using the following equation. 

𝐴𝐵 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2     (3-3) 

 

Calculate a relative distance PErelative 

 𝑃𝐸𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =  
𝑃𝐸

𝐴𝐵
      (3-4) 
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The PErelative values for both left and right hands were calculated and used as 

features (DIS_LEFT, DIS_RIGHT) to represent the distances between barbell and hands, 

as described in Table 3.5. 

 

Table 3.5 Extended features 

No. Barbell features Descriptions 

1. DIS_LEFT Distance between barbell and left hand 

2. DIS_RIGHT Distance between barbell and right hand 

  

The distance between the hands and a barbell (DHB) was computed using the 

following equation. 

 DHB = max(DIS_LEFT, DIS_RIGHT)   (3-5)  

The value of DHB used to judge whether the barbell slip from hands. 

 

3.5.9 Determination of  Snatch Weightlifting Success 

 

Several comprehensive approaches to determining weightlifting success are 

presented here. The evaluation process included several criteria, including: the duration 

of the hold in the final phase, the completeness and order of the six phases, and the 

presence of any barbell slippage. Each criterion is systematically analyzed to determine 

weightlifting success. Figure 3.8 showed the classification results that contained all six 

weightlifting phases while in Figure 3.9,  the classification results contained only three 

weightlifting phases. Phase classification was applied because successful lifting must 

include all six phases. 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 2 2 2 2 2 2 2 3 3 3 3 4 4 

4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5         

Figure 3.8  Show a result contained all six weightlifting phases 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2          

Figure 3.9 Show a result contained only three weightlifting phases 

  

 3.5.9.1 Judge based on the holding period of the sixth phase 

 

The algorithm for calculating the holding time of the sixth phase and 

checking whether the holding time was more than threshold_hold_time was 

explained as follows: 

  

Given the phase sequence shown in Figure 3.10 which contained 45 frames of 

the sixth phase and the parameters as shown in Table 3.6.  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 2 2 2 2 2 2 2 3 3 3 3 4 4 

4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5         

Figure 3.10 A phase sequence 

 

Table 3.6 Parameters for calculating the holding time of the sixth phase 

No. Name Description 

1 phase_seq_array 

An array representing a classified phase 

sequence of a video 

 (e.g. a phase sequence shown in Figure 3.10) 

2 num_6th_phase 
The number of 6th phase frames  

(e.g. 45 in Figure 3.10) 

3 
threshold_hold_time (in 

seconds) 

Threshold of holding time for the sixth phase.  

(e.g. 1 second) 
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Steps: 

Count the number of frames in the sixth phase (phase number 5) in 

phase_seq_array, then divide it by a frame rate­­ to get the holding time, T_6th_phase. 

  

T_6th_phase = 
𝑛𝑢𝑚_6𝑡ℎ_𝑝ℎ𝑎𝑠𝑒

𝑟𝑎𝑚𝑒_𝑟𝑎𝑡𝑒
       (3-6) 

  

Given frame_rate equaled 30 frames/second, based the phase sequence in 

Figure3.7,  T_6th_phase can be calculates as:  

  

T_6th_phase= 
45

30
= 1.5 seconds     (3-7) 

  

Check if T_6th_phase is less than threshold_hold_time seconds; if so, return 

False, otherwise return True. 

  

if(T_6th_phase<threshold_hold_time) 

return False 

else:  

return True       (3-8) 

  

Because T_6th_phase was greater than 1, the method returns True and passed 

checking. The T_6th_phase was determined exclusively from the number of sixth 

phases, as this method did not take into account the distance between the hands and a 

barbell. 
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 3.5.9.2 Judge Based on the Presence of all six phases in a Phase 

Sequence 

 

This part explained the algorithm for counting the number of frames for 

each phase and judging whether each phase contains more than two frames. A 

sequence in which a phase spanned fewer than two frames was judged to be a 

missing phase sequence. 

  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2          

Figure 3.11 Missing phase in the phases sequence (marked in red) 

  

Given the phases in a phase sequence and the parameters for judging 

whether each phase contains more than two frames, as shown in Figure 3.11 and 

Table 3.7. 

  

Table 3.7 Parameters for counting the number of frames for each phase 

No. Name Description 

1 phase_seq_array 

An array representing a classified phase 

sequence of a video 

(e.g. a phase sequence shown in Figure 3.11) 

2 threshold_times_phase Threshold of the minimum appearance time for 

each phase in a video sequence (e.g. 2) 

  

Steps: 

Count the number of each phase in phase_seq_array 

Check if any phase is shorter than threshold_times_phase 
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If there is every phase  is shorter than threshold_times_phase, consider it as 

False (unsuccessful). 

If every phase is longer than threshold_times_phase, consider it as True 

(successful). 

 

So Figure 3.11 shows that the classification leaded to the absence of the 

fourth, fifth and sixth phases. 

  

 3.5.9.3 Judge From Six Phases in Order 

 

The part explained the algorithm for judging whether a video sequence contains 

all phases (0~5) in ascending order. For a phase sequence as shown in Figure 3.12, the 

algorithm was described as follows:  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

1 1 2 2 2 3 3 5 5 5 5 3 3 1 1 1 

2 3 5 3 3 3 4 3 4 3 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Figure 3.12  Phases in a phase sequence (Disordered parts were marked red) 

  

As shown un Table 9,  Parameters for judging whether a video sequence 

includes all phases (0~5) in the ascending order 

  

Table 3.8 Parameters for checking the order of frames for each phase 

No. Name Description 

1 phase_seq_array 
An array representing a classified phase sequence 

of a video  (e.g. a phase sequence shown in Figure 

3.12) 
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The steps to check whether a video sequence contains all phases (0~5) in the 

ascending order were described below. The method checked whether a lower value 

phase value was observed later in the array. 

  

Steps: 

Check whether the sequence in phase_seq_array included all phases from 0 to 

5 in ascending order by scanning every element in the array using index (i) from 0 to 

the number of elements in the array – 1 (len(phase_seq_array) – 1), the check should 

complete once the fifth phase has been verified. 

 

If any element does not follow the ascending order, return False. 

 

If every element follows the ascending order, return True. 

 

      for i = 0 to len(phase_seq_array) – 1  

  if (phase_seq_array[i] > phase_seq_array[i + 1]  

or (phase_seq_array[i+1]- phase_seq_array[i])>1)  

and phase_seq_array[i]<5: 

return False 

return True         

  

Thus, Figure 3.12 shows that the classify feature result does not follow correct 

order (not pass checking) and the sequence was determined as unsuccessful 

weightlifting. 

 

 3.5.9.4 Judge Based on the Ordered six Phases, Presence of all six 

phases and Barbell slipping 

 

This method checked the presence of all six phases and the distance between 

hands and a barbell until the last maximum phases obtained from the phase classification. 

Figures 3.13–3.14 showed the last maximum phase was found at the 82nd frame. The 

distances, as shown in Figure 3.15, were checked from the first frame to the 82nd frame, 
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and it was found that the distances were above a threshold, indicating that the barbell 

was out of control and fell. 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

1 1 2 2 2 3 3 5 5 5 5 3 3 1 1 1 

2 3 5 3 3 3 4 3 4 3 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Figure 3.13 Phase fluctuation shown in a red area 

 

 

Figure 3.14 A curve in the red area of the graph shown the classified phase 

fluctuation 
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Figure 3.15 The fluctuation in the distances between hands and a barbell  

 

Table 3.9 Parameters for judging the correct order and presence of all phases and  

                determining whether a video sequence contains barbell slipping 

No. Name Description 

1 phase_seq_array 
An array representing a classified phase sequence of 

a video 

(e.g. a phase sequence shown in Figure 3.13) 

2 dis_seq_array_left 
A sequence of distances between the left hand and a 

barbell (e.g. one side hand distance sequence in 

Figure 3.15) 

3 dis_seq_array_right 
A sequence of distances between the right hand and 

a barbell  (e.g. one side hand distance sequence in 

Figure 3.15) 

4 threshold_times_phase A minimum appearance time threshold for every 

phase in a video sequence (e.g. 2) 

5 num_cont_frms The number of consecutive frames that a hand is left 

off a barbell (e.g. 3)  

6 threshold_dis_val The threshold for determining whether a hand is left 

off a barbell (e.g. 0.3) 

 

The steps for checking that all phases are present and in the correct order (see 

subsections 3.5.9.2 and 3.5.9.3), and whether a hand is left off a barbell. 

 

Steps: 
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Judge whether each phase contains more than 2 frames from an array, 

phase_seq_array (see subsection 3.5.9.2).  

 

Check whether a video sequence contains all phases in the correct order using  

an array, phase_seq_array (see subsection 3.5.9.3).  

 

From dis_seq_array_left, find the number of consecutive frames that a hand 

stays away from a barbell using the distances between the left hand and a barbell. The 

frame in which the distance between the right hand and a barbell is greater than 

threshold_dis_val is counted as a frames in which a hand is left off a barbell.  

 

Use the same method to check the slipping of a barbell from the right hand. 

 

Find the last maximum phase position or frame.  

 

Check the distances between hands and a barbell from the first frame to the last 

maximum phase position or frame. If a distance was detected as greater than a threshold, 

a barbell is considered to have fallen or slipped. 

 

 3.5.9.5 Judge Based on the Ordered six Phases, Presence of all Phases 

and the Holding Time for the sixth Phase  

 

In this part, the algorithm not only checks for the correct order and presence of 

all phases (see subsections 3.5.9.2 and 3.5.9.3),  but also calculate the holding time of 

the sixth phase and check whether the holding time was more than threshold_hold_time 

second (see subsections 3.5.9.1).  
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 

3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5             

Figure 3.16 Data shown all phases in the correct order and sufficient holding time for 

the sixth phase 

 

 

Figure 3.17 All phases in the correct order with sufficient holding time for the 

sixth phase in a sequence 

  

Table 3.10 Parameters for judging the correct order and presence of all phases and for  

                  checking whether the holding time of the sixth phase was at least 1 second 

No. Name Description 

1 phase_seq_array An array representing a classified phase sequence of 

a video (e.g. a phase sequence shown in Figure 3.16) 

2 threshold_times_phase A minimum appearance time threshold for every 

phase in a video sequence (e.g. 2) 
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Table 3.10 Parameters for judging the correct order and presence of all phases and for                                         

                  checking whether the holding time of the sixth phase was at least 1 second                    

                  (cont.) 

No. Name Description 

3 num_6th_phases The number of frames classified as the 6th phase 

(e.g. 45 in Figure 3.10) 

4 threshold_hold_time Threshold of holding time for the sixth phase.  

 (e.g. 1 second) 

 

The steps to verify that all classified phases were and appeared in the correct 

order, as well as the holding time of the sixth phase, were at least "threshold_hold_time" 

seconds (see subsection 3.5.9.1). 

 

Steps: 

Judge whether each phase contains more than 2 frames from an array, 

phase_seq_array (see subsection 3.5.9.2).  

 

Check whether a video sequence contains all phases in the correct order using  

an array, phase_seq_array (see subsection 3.5.9.3).  

 

Use the phase_seq_array array to assess whether the calculated sixth phase lasts 

longer than a threshold_hold_time (see subsection 3.5.9.1). 

 

Judge whether the computed sixth phase holding time more than a time 

threshold in seconds (threshold_hold_time) using  an array, phase_seq_array (see 

subsection 3.5.9.1).  

 

If  all the above conditions were met, it is considered as a successful lifting. 

Otherwise, it is considered as an unsuccessful lifting. 

  

Thus, Figures 3.17-3.18 show that the results of the classified features follow 

the correct order and contain all phases. The holding time of the sixth phase of more 

than one second indicated that the sequence was a successful weightlifting attempt. 
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 3.5.9.6 Judge Based on the Ordered six Phases, the Holding Time for 

the sixth Phase and the Barbell Slipping 

  

In this part, the algorithm not only checks for the correct order and presence of 

all phases (subsections 3.5.9.2, 3.5.9.3, and 3.5.9.1), and verifies whether the barbell 

was held for longer than threshold_hold_time seconds. It also makes sure the weight 

does not slip during the sixth phase of the phase sequence. This method included the 

distance between the hands and a barbell. The sixth phase holding time in this method 

was different from the first method, in which the holding time was calculated from only 

a phase sequence. This method calculated the time from the first sixth-phase frame to 

the last sixth-phase frame in which the distance between hands and a barbell was not 

greater than a threshold. 

 

 

Figure 3.18  The fluctuation in the distances between hands and a barbell  
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Table 3.11 Parameters for judging the correct order and presence of all phases, verifying  

                  whether the barbell was held for longer than threshold_hold_time seconds,   

                  and ensuring that the barbell does not slip during the sixth phase of the phase  

                  sequence 

No. Name Description 

1 phase_seq_array An array representing a classified phase sequence of 

a video (e.g. a phase sequence shown in Figure 3.16) 

2 dis_seq_array_left 
A sequence of distances between the left hand and a 

barbell (e.g. one side hand distance sequence in 

Figure 3.18) 

3 dis_seq_array_right 
A sequence of distances between the right hand and a 

barbell (e.g. one side hand distance sequence in 

Figure 3.18) 

4 threshold_times_phase A minimum appearance time threshold for every 

phase in a video sequence (e.g. 2) 

5 num_cont_frms The number of consecutive frames that a hand is left 

off a barbell (e.g. 3)  

6 threshold_dis_val The threshold for determining whether a hand is left 

off a barbell (e.g. 0.3) 

7 num_6th_phases The number of frames classified as the sixth phase 

(e.g. 45 in Figure 3.11) 

8 threshold_hold_time Threshold of holding time for the sixth phase.  

 (e.g. 1 second) 

  

The steps to check the correct order and presence of all phases, and verify 

whether the barbell was held for longer than threshold_hold_time seconds (subsections 

3.5.9.2, 3.5.9.3, and 3.5.9.1). Step 4 ensures that the barbell does not slip during the 

sixth phase of the phase sequence. 

 

Steps: 

Judge whether each phase contains more than 2 frames from an array, 

phase_seq_array (see subsection 3.5.9.2).  

 

Check whether a video sequence contains all phases in the correct order using  

an array, phase_seq_array (see subsection 3.5.9.3).  
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Use phase_seq_array array and the distance between the hands and a barbell to 

calculate the time from the first sixth-phase frame to the last sixth-phase frame in which 

the distance between hands and a barbell was not greater than a threshold. 

 

Checks whether the calculated sixth phase lasted longer than a 

threshold_hold_time. 

 

If  all the above conditions were met, it is considered as a successful lifting. 

Otherwise, it is considered as an unsuccessful lifting. 

 

Thus, Figures 3.17, 3.14 and 3.19 showed that the classified feature results 

follow the correct order and presence of all phases, the holding time of the sixth phase 

was more than 1 second, and the barbell does not slip during the sixth phase in the phase 

sequence (passing parts of the checking items), determining the sequence as a successful 

weightlifting attempt. 

 

3.5.10 Validation Sample Strategies Design for Determination Methods of 

Weightlifting 

 

This section designed a test strategy for detecting the success or failure in 

snatch weightlifting from videos. It included 20 weightlifting attempt videos, 

comprising 10 successful and 10 failure scenarios. Specifically, the failure videos 

exhibit various error cases. The goal was to catalog all error scenarios occurring in real 

contests and rank them based on their likelihood in real-life situations. Weightlifting 

failure videos were divided into five categories, as shown in Table 3.12. 

 

Table 3.12 Examples of weightlifting failure videos and checking methods used  

Example No. Description 

Example 1  Six distinct checking methods were used to test it. Six methods 

successfully identified the failure. 

Example 2 

 

Six distinct checking methods were used to test it. Five methods 

successfully identified the failure, whereas only M_AllPhases failed to 

detect the failure. 
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Table 3.12 Examples of weightlifting failure videos and checking methods used (cont.) 

Example No. Description 

Example 3 Six distinct checking methods were used to test it. Three methods 

successfully identified the failure, whereas M_AllPhases, M_OrderPh, 

and M_AllPhSlip failed to detect the failure. 

Example 4 

 

Six distinct checking methods were used to test it. Three methods 

successfully identified the failure, whereas M_AllPhases, M_OrderPh, 

and M_AllPhSlip failed to detect the failure. 

Example 5 

 

Six distinct checking methods were used to test it. Two methods 

successfully identified the failure, whereas M_SixHold, M_AllPhases, 

M_OrderPh and M_OrderHold failed to detect the failure. 

 

Table 3.13 The samples video of weightlifting attempts 

Video Sample Description 

FWS1~FWS4 This sample video was an Example 1 type video, showcasing a 

common weightlifting mistake where failure occurred due to the 

omission of important phases. There were four test samples within 

this category, representing the most common error scenario.  

FWS5~FWS7 This sample video was the Example 2 type video, representing the 

second most common error scenario. After completing all essential 

phases, the lifter experienced a failure or chose to abandon the last 

phase. This category included three test samples that allow for the 

validation of all methods, except for the M_AllPhases method, 

which identifies the absence of some phases. 

FWS8 This sample video was the Example 3 type video, representing a 

rare occurrence of a mistake with only one test sample. The sample 

was utilized to assess the efficacy of method M_AllPhSlip in 

detecting slippage of a barbell. 

FWS9 This sample video was an Example 4 video type, which was a rare 

error situation used to evaluate the performance of the last phase 

holding time method-based techniques M_SixHold and 

M_OrderHold. 

FWS10 This sample video was an Example 5 video type, demonstrating 

another rare error situation. This video evaluates the performance of 

two techniques, M_SixHold and M_OrderHold, which are based on 

the last phase holding time method. 

SWS1~SWS3 These videos showed the athlete at a greater size, which made it 

easier to see their facial expressions and movements. 

SWS4~SWS10 These videos showed the athlete at a smaller size and focused on the 

overall continuity of the athlete's movements. 

SWS1~SWS4 Weightlifting competition at the Rio Olympics, with a green 

background color in the weightlifting venue 

SWS5~SWS7 Weightlifting competition at the Tokyo Olympics, with a red 

background color in the weightlifting venue 
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Table 3.13 The samples video of weightlifting attempts (cont.) 

Video Sample Description 

SWS8~SWS10 Weightlifting competition at the Beijing Olympics, with a blue 

background color in the weightlifting venue 

SWS1~SWS7 Men's heavyweight weightlifting competition, with many weights 

loaded and a barbell length of 2.2 metres 

SWS8~SWS10 Women's lightweight weightlifting competition, with fewer weights 

loaded and a barbell length of 2.15 metres 

Remark: FWS means "failure weightlifting sample," and SWS means "successful 

weightlifting sample." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4 

  

Results and Discussion 

   

The results were divided into 5 parts: 1) Weightlifting phase classification. 2) 

Weightlifting phase correction. 3) Calculating distances between hands and a barbell. 4) 

Determining success or failure in weightlifting sequences. 5) Determine snatch 

weightlifting success 

  

4.1 Weightlifting Phase Classification 

 

Weightlifting phase classification is an important part of the research. The 

image classification methods consisting of CNN, MobileNet, and ResNet50 were 

applied to directly distinguish weightlifting phases from images. On the other hand, the 

features extracted by using MediaPipe were used with ANN and SVM classifiers to 

identify the weightlifting phases. The classification using images and the MidiaPipe 

features were then evaluated and compared. Table 4.1 showed that the classification 

using MidiaPipe features and SVM outperformed that using ANN. In addition, it 

provided higher accuracy than the  classification from images using CNN, MobileNet 

and ResNet50. 

 

Table 4.1 Weightlifting phase classification accuracy 

Classifier 
Accuracy 

using images 

Accuracy using posture 

landmarks and barbell features 

ANN - 89.86% 

SVM   91.96% 

CNN 88.13% - 

MobileNet 88.58% - 

ResNet50 78.14% - 
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Table 4.1 shows the accuracy of various classifiers in detecting weightlifting 

phases. When classifying weightlifting phases from images, MobileNet obtained an 

accuracy of 88.58%. CNN achieved 88.13%, and ResNet50 achieved 78.14%. 

 

With the posture landmarks and barbell features extracted by MediaPipe, the 

SVM classification achieved 91.96% accuracy, which was higher than the ANN 

classifier's accuracy. The results suggested that utilising MediaPipe features in 

conjunction with SVM yielded higher accuracy compared to the other approaches 

examined. 

 

Based on the findings, the subsequent part of the study focused on using phase 

classification results from MidiaPipe features and SVM to determine success in snatch 

weightlifting. Nonetheless, some errors in the phase classification were corrected after 

the phase classification. Therefore, we applied the procedure to correct any likely 

incorrect phases and presented the findings in the following section. 

 

4.2 Weightlifting Phase Correction 

 

The phase correction, as explained in section 3.5, is based on five neighboring 

classified phases. Figures 4.1-4.2 provided examples of weightlifting phases both before 

and after the correction. The correction of the weightlifting phases of an unsuccessful 

and successful weightlifting, respectively, was illustrated in Figures 4.1 and 4.2. 
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Figure 4.1 Phases derived from a successful weightlifting, both prior to and 

following fixing 

 

 

Figure 4.2 Phases derived from an unsuccessful weightlifting, both prior to and 

following fixing 
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4.3 Calculating Distances Between Hands and a Barbell 

 

This section illustrated the distances between the hands and the barbell in both 

successful and unsuccessful weightlifting video sequences. Two curves represented the 

distances between left and right hands to a barbell, with the values expressed relative to 

the length of the barbell. 

  

Figure 4.3 shows the distances between hands and a barbell for a video 

sequence considered successful, whereas Figure 4.4 illustrates the same measurement 

for a video sequence considered failed. Unsuccessful attempts led to substantial 

variations in the distance between hands and a barbell, occasionally surpassing 0.8. In 

contrast, the fluctuation in distance during successful attempts consistently stayed below 

0.2 (In the real program, the threshold was fixed at 0.3 to avoid some fluctuation), 

indicating a more consistent grip on the barbell throughout the whole lifting operation. 

  

These findings emphasized the significance of monitoring the distances 

between hands and a barbell as a potential indicator of barbell slippage during 

weightlifting. The graphs visually depicted the fluctuation in hand-barbell distances and 

aided in identifying ballbell slipping situations. The results demonstrated significant 

disparities in the fluctuation of hand-barbell distance between successful and 

unsuccessful weightlifting attempts, highlighting the crucial role of grip stability in the 

lifting procedure. 

 

These findings were significant for determining success or failure in 

weightlifting sequences. 
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Figure 4.3  The fluctuation in the distances between hands and a barbell of a 

successful video  

 

 

Figure 4.4  The fluctuation in the distances between hands and a barbell of an 

unsuccessful video 
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4.4 Determination of Success or Failure in Weightlifting Sequences 

  

This section presented the results of detecting the success or failure of 

weightlifting from videos. The analysis used video image recordings, estimated phase 

sequences from the video sequences, and the distance between the hands and the barbell. 

Tables 4.2 to 4.7 demonstrate how six different testing methods perform in detecting 

errors and incidents in five types of weightlifting attempts. Six video-based approaches 

for assessing snatch weightlifting success are shown in Table 4.2. 

 

Table 4.2 Six approaches used to determine the success of snatch weightlifting 

Method Name Description 

M_SixHold Judge based on the holding period of the sixth phase (subsection 

3.5.9.1) 

M_AllPhases Judge based on the presence of all six phases in a phase sequence 

(subsection 3.5.9.2) 

M_OrderPh Judge from six phases in order (subsection 3.5.9.3) 

M_AllPhSlip Judge based on the ordered six phases, presence of all six phases 

and barbell slipping  

(subsection 3.5.9.4) 

M_OrderHold Judge based on the ordered six phases, presence of all phases and 

the holding time for the sixth phase (subsection 3.5.9.5) 

M_OrderSlip Judge based on the ordered six phases, the holding time for the 

sixth phase and the barbell slipping (subsection 3.5.9.6) 

 

The results of six different testing methods are displayed in Table 4.3 for five 

different categories (examples) of videos. The word "Unidentified" indicated that 

weightlifting failure could not be detected, whereas the word "Identified" indicated that 

it could. 

 

Table 4.3 Results from six different testing methods on five different examples 

Example 

Method 
Example 1 Example 2 Example 3 Example 4 Example 5 

M_SixHold Identified Identified Identified Identified Unidentified 

M_AllPhases Identified Unidentified Unidentified Unidentified Unidentified 

M_OrderPh Identified Identified Unidentified Unidentified Unidentified 
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Table 4.3 Results from six different testing methods on five different examples (cont.) 

Example 

Method 
Example 1 Example 2 Example 3 Example 4 Example 5 

M_AllPhSlip Identified Identified Unidentified Unidentified Identified 

M_OrderHold Identified Identified Identified Identified Unidentified 

M_OrderSlip Identified Identified Identified Identified Identified 

 

4.4.1 Example 1:  Initial Phases Barbell Slip Video 

 

The video in this section shows an athlete performing the weightlifting 

sequence successfully through the first phases through the fifth phase, but failing to 

complete the sixth phase, which causes the barbell to drop. This part elucidated the 

process of recognizing an incomplete phase sequence during an unsuccessful effort. The 

figures 4.7, 4.8 and 4.9 depicted the outcome of an unsuccessful snatch weightlifting 

endeavour. The athlete in Figure 4.5 completes the fifth phase, but an injury causes them 

to give up on the lift and lose control of the barbell. Figure 4.6 depicts the phase 

sequence in which the athlete returns to the first and second phases' movements. The 

phase changes were shown in Figure 4.7, where the movements are shown in a 

continuous sequence with variation throughout the lift attempt. 

 

According to the analysis, the athlete successfully finished the fifth phase in 

the 83th frame but stopped the lift prematurely owing to injury or other factors. In the 

93rd frame, there is an evidence of an abortion. The frame was identified as the fourth 

phase. Then, in the 118th frame, the athlete performed the action that the second phase 

was recognized. Simultaneously, based on the distances between hands and a barbell, 

Figure 4.8 indicated that starting with the 118th frame, the barbell was no longer within 

the athlete's grasp. A significant increase in distances between hands and a barbell 

indicated the athlete's loss of control and grip on the barbell. The action was identified 

as the lift's first phase in the 145rd frame because the bar was still uncontrollably lifting. 

The lift attempt failed because the sixth phase's holding period was less than a 

predetermined threshold since there were no sixth phase frames. 
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a) In the 83rd frame of a weightlift b) In the 93rd frame of a weightlift 

  

c) In the 118th frame of a weightlift d) In the 145th frame of a weightlift 

 Figure 4.5  Unsuccessful weightlifting screenshots 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 

4 4 4 4 4 4 4 4 4 3 3 3 3 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0          

Figure 4.6  Results of unsuccessful weightlifting's classified phases (After the 

Phase Correction) 
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Figure 4.7  Classified phases of unsuccessful weightlifting 

 

 

Figure 4.8  The fluctuation in the distances between hands and a barbell  

 

This example underwent several checks based on phase sequences and barbell 

handling. 1) The "Judge based on the holding period of the sixth phase" check was not 

passed, successfully identifying the abort caused by injury or unexpected events in 

weightlifting. The athlete did not sustain the lifting posture during the sixth phase for 
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more than 1 second. 2) The "Judge based on the presence of all six phases in a phase 

sequence" check was not passed. The system identified the abort caused by injury or 

unexpected events in weightlifting. The athlete did not finish all six phases of 

weightlifting. 3) The "Judge from six phases in order" check was not passed. The system 

identified the abort caused by injury or unexpected events in weightlifting. The athlete 

did not complete all six phases that followed correct order. 4) The "Judge based on the 

ordered six phases, presence of all six phases and barbell slipping" check was not passed. 

The sixth phase was not found. 5) The "Judge based on the ordered six phases, presence 

of all phases and the holding time for the sixth phase" check was not passed. No the 

sixth-phase found. The athlete did not finish all six phases of weightlifting in correct 

order. 6) The "Judge based on the ordered six phases, the holding time for the sixth 

phase and the barbell slipping" check was not passed. The system identified the issue 

caused by injury or unexpected events in weightlifting. The athlete did not sustain 

holding the barbell during the sixth phase of weightlifting for more than 1 second, or 

did not finish all six phases of weightlifting in correct order. 

 

Therefore, the weightlifting failure video underwent testing utilizing six 

distinct methods, all of which accurately classified the first example as a weightlifting 

failure video. 

  

4.4.2 Example 2: Later Phases Barbell Slip Video 

 

The video in this section showed an athlete trying to complete the sixth phase 

of snatch weightlifting, but it was unsuccessful. In this example, all phases were 

presented. However, there was an abrupt halt or termination of the motions abruptly 

halted or terminated. Figures 4.11 and 4.12 display the outcomes of an unsuccessful 

snatch weightlifting attempt. Figure 4.9 shows a snapshot of the hand slip action during 

a failed snatch lift. Figure 4.10 shows the phase sequence, highlighting that all phases 

are present but in a disordered order. This was because the athlete’s movements lacked 

a smooth progression through the phases, particularly with no consistent trend towards 

the sixth phase. Figure 4.11 presents a curve graph illustrating the phase changes during 
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the failed lift. The barbell distance changes in Figure 4.12 showed that the hands release 

the barbell in the latter half of the video, indicating a loss of control. 

To elaborate, according to the analysis, these figures demonstrated that the 

athlete maintained the appropriate postures and phases from the 1st phase at the 27th 

frame to the 4th phase at the 69th frame. Between the 70th and 74th frames, anomalous 

motions were seen, specifically during the fourth and sixth phases, when the barbell had 

already slipped out of the athlete's grasp (Figure 4.12). During the 100th frame, the 

athlete lost balance and experienced more unconventional movements, finally leading 

to the failure of the lift attempt. 

 

  

a) In the 27th frame of a weightlift b) In the 70th frame of a weightlift 

  

c) In the 74th frame of a weightlift d) In the 100th  frame of a weightlift 

Figure 4.9  Unsuccessful weightlifting screenshots 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

1 1 2 2 2 3 3 5 5 5 5 3 3 4 4 4 

1 3 3 3 3 3 3 3 3 3 4 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 

Figure 4.10  Results of unsuccessful weightlifting's classified phases (After the 

phase correction)  

 

 

Figure 4.11  Classified phases of unsuccessful weightlifting 
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Figure 4.12 The fluctuation in the distances between hands and a barbell 

  

This sample was subjected to multiple checks based on phase sequences and 

barbell handling. 1) The "Judge based on the holding period of the sixth phase" check 

was not passed. The system identified the abort caused by injury or unexpected events 

in weightlifting. The athlete did not sustain the lifting posture during the sixth phase for 

more than 1 second. 2) The "Judge based on the presence of all six phases in a phase 

sequence" check was passed, failing to identify the abort caused by injury or unexpected 

events in weightlifting. In fact, the athlete had finished all six phases of weightlifting. 

3) The "Judge from six phases in order" check was not passed. The system identified 

the abort caused by injury or unexpected events in weightlifting. The athlete did not 

complete all six phases that followed correct order. 4) The "Judge based on the ordered 

six phases, presence of all six phases and barbell slipping" check was not passed. The 

system identified the issue caused by injury or unexpected events in weightlifting. The 

athlete did not hold the barbell in last two frames of sixth phase of weightlifting. 5) The 

"Judge based on the ordered six phases, presence of all phases and the holding time for 

the sixth phase" check was not passed. The system identified the abort caused by injury 

or unexpected events in weightlifting. The athlete did not sustain the lifting posture 

during the sixth phase for more than 1 second, or did not finish all six phases of 

weightlifting in correct order. 6) The "Judge based on the ordered six phases, the holding 
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time for the sixth phase and the barbell slipping" check was not passed. The system 

identified the issue caused by injury or unexpected events in weightlifting. The athlete 

did not sustain holding the barbell during the sixth phase of weightlifting for more than 

1 second, or did not finish all six phases of weightlifting in correct order. 

 

Therefore, the weightlifting failure video underwent testing utilizing six 

distinct methods. Except for method M_AllPhases, all other methods correctly 

identified the second example as a weightlifting failure video. 

 

4.4.3 Example 3: 6th Phase Barbell Slip Video 

 

The athlete in this section's video successfully completed all the necessary 

movements, but either an injury interrupted the final action of the sixth phase or it 

abruptly ended before the time deemed a successful lift. The barbell was also dropped. 

Figures 4.15 and 4.16 depict the outcomes of an unsuccessful snatch weightlifting 

endeavor. Figure 4.13 shows the athlete dropping the barbell while completing the sixth 

phase. Figure 4.14 displays the phase sequence, showing all six phases. However, the 

duration of the sixth phase was too short, followed by the barbell release. Figure 4.15 

details continuous movement phase changes during the lift attempt. Significant distance 

changes in the latter part of Figure 4.16 indicated that the barbell was released. 

  

Based on the analysis, the athlete successfully finished the first, second, and 

sixth phases in the 23rd, 61st, and 117th frames, respectively. The athlete successfully 

executed a lift of the barbell. According to Figure 4.16, the athlete experienced distance 

changes over the threshold after the 117th frame, indicating a loss of grip due to a 

malfunction. At the 143rd frame, the athlete relinquished control of the barbell and 

ceased the lifting attempt. The athlete was unable to sustain the sixth phase for the 

necessary duration, leading to a failure in the lift. 
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a) In the 23rd frame of a weightlift b) In the 61st frame of a weightlift 

  

c) In the 117th frame of a weightlift d) In the 143rd frame of a weightlift 

Figure 4.13  Unsuccessful weightlifting screenshots 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

1 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 

4 4 3 3 2 2 2 2 2 2 2 2 2 2 2 2 

2 2 2 2 2 2 2 2 2 2       

 

Figure 4.14  Results of unsuccessful weightlifting's classified phases (After the phase 

correction) 
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Figure 4.15  Classified phases of unsuccessful weightlifting 

 

 

Figure 4.16  The fluctuation in the distances between hands and a barbell 

  

This sample was subjected to multiple checks based on phase sequences and 

barbell handling. 1) The "Judge based on the holding period of the sixth phase" check 

was not passed. The system identified the abort caused by injury or unexpected events 

in weightlifting. The athlete did not sustain the lifting posture during the sixth phase for 
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more than 1 second. 2) The "Judge based on the presence of all six phases in a phase 

sequence" check was passed. The athlete had finished all six phases of weightlifting. 3) 

The "Judge from six phases in order" check was passed.  The athlete had completed all 

six phases that followed correct order. 4) The "Judge based on the ordered six phases, 

presence of all six phases and barbell slipping" check was passed. After checking the 

distances between hands and a barbell from the first frame to the last maximum phase 

position or frame, the distances was lower than a threshold. 5) The "Judge based on the 

ordered six phases, presence of all phases and the holding time for the sixth phase" check 

was not passed. The system identified the abort caused by injury or unexpected events 

in weightlifting. The athlete did not sustain the lifting posture during the sixth phase for 

more than 1 second, or did not finish all six phases of weightlifting in correct order. 6) 

The "Judge based on the ordered six phases, the holding time for the sixth phase and the 

barbell slipping" check was not passed. The system identified the issue caused by injury 

or unexpected events in weightlifting. The athlete did  not sustain holding the barbell 

during the sixth phase of weightlifting for more than 1 second, or did not finish all six 

phases of weightlifting in correct order. 

 

Therefore, the weightlifting failure video underwent testing utilizing six 

distinct methods. Four methods correctly identified the third example as a weightlifting 

failure video; however, methods M_AllPhases and M_OrderPh did not identify the 

errors. 

 

4.4.4 Example 4: No-Slip 6th Phase Fall Video 

 

The video in this section showed an athlete who successfully completed all the 

preceding phases but was unable to maintain the sixth phase for the necessary duration. 

Despite completing all motions, the athlete disrupted his hold on the barbell during the 

sixth phase, making it challenging to determine if the barbell has released. Figures 4.19 

and 4.20 depict the outcomes of an unsuccessful snatch weightlifting endeavor. Figure 

4.17 shows the athlete fails to sustain the sixth phase, resulting in a fall, with the barbell 

remaining close to the hands. Figure 4.18 displays the phase sequence and shows all six 

phases completed, but the sixth phase did not hold for enough time, and the fall was 
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categorized as an unrecognized phase. Figure 4.19 depicts the phase change sequence 

and illustrates continuous changes, detailing the actions taken during the lift attempt. 

Figure 4.20 shows the barbell distance change sequence, which shows significant 

fluctuations without loss of grip and with a shorter sixth phase duration than required. 

 

According to the analysis, the athlete successfully completed the first, second, 

and sixth phases in the 12th frame, 28th frame, and 80th frame, respectively, and 

effectively lifted the barbell. The barbell was held by the athlete until the 82nd frame, as 

depicted in Figure 4.20. Upon reaching the 82nd frame, the athlete experienced a 

predicament that led to variations in distances; however, they remained within the 

acceptable limit, indicating the absence of any loss of grip. During the 109th frame, the 

athlete experiences a fall but manages to maintain their grip on the bar. The athlete failed 

to meet the necessary sixth-phase time requirement, leading to a failure to complete the 

lift. 

 

  

a) In the 12nd frame of a weightlift b) In the 28th frame of a weightlift 

  

c) In the 82nd frame of a weightlift d) In the 109th frame of a weightlift 

Figure 4.17  Unsuccessful weightlifting screenshots 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 4 4 3 3 3 2 2 1 1 0 0  

Figure 4.18  Results of unsuccessful weightlifting's classified phases (After the phase 

correction) 

 

 

Figure 4.19  Classified phases of unsuccessful weightlifting 
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Figure 4.20 The fluctuation in the distances between hands and a barbell 

 

This sample underwent several checks based on phase sequences and barbell 

handling: 1) The "Judge based on the holding period of the sixth phase" check was not 

passed. The system identified the abort caused by injury or unexpected events in 

weightlifting. The athlete did not sustain the lifting posture during the sixth phase for 

more than 1 second. 2) The "Judge based on the presence of all six phases in a phase 

sequence" check was passed. The athlete had finished all six phases of weightlifting. 3) 

The "Judge from six phases in order" check was passed. The athlete had completed all 

six phases that followed correct order. 4) The "Judge based on the ordered six phases, 

presence of all six phases and barbell slipping" check was passed, failing identify the 

issue caused by injury or unexpected events in weightlifting. In fact, the athlete had held 

the barbell during all phases of weightlifting (the distance threshold was fixed at 0.3). 

5) The "Judge based on the ordered six phases, presence of all phases and the holding 

time for the sixth phase" check was not passed. The system identified the abort caused 

by injury or unexpected events in weightlifting. The athlete did not sustain the lifting 

posture during the sixth phase for more than 1 second. 6) The "Judge based on the 

ordered six phases, the holding time for the sixth phase and the barbell slipping" check 
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was not passed. The system identified the issue caused by injury or unexpected events 

in weightlifting. The athlete did not sustain holding the barbell during the sixth phase of 

weightlifting for more than 1 second. 

 

Therefore, the weightlifting failure video underwent testing utilizing six 

distinct methods. 3 methods correctly identified the fourth example as a weightlifting 

failure video, however methods M_AllPhases, M_OrderPh, and M_AllPhSlip did not 

identify errors  

 

4.4.5 Example 5: Unchanged Posture After Barbell Slip 

 

The video in this section shows an athlete seems to execute all the motions 

successfully. Nevertheless, as a result of an unforeseen occurrence, the athlete hurls the 

barbell aside. As the athlete is uninjured, he remains motionless for a brief period and 

raises his hands before accepting the error. Several frames that occur when the barbell 

is mistakenly thrown were identified as the sixth phase. The figures 4.23 and 4.24 depict 

the outcomes of an unsuccessful snatch attempt. In Figure 4.21, observe the athlete 

failing during the sixth phase, although the athlete completed all phases. Figure 4.22 

shows the phase sequence chart. The athlete looked like completes all six phases with 

sufficient duration for the sixth phase. Figure 4.23 illustrates continuous changes in 

movement phases, providing a detailed visualization of the athlete’s actions during the 

lift attempt. Figure 4.24 depicts the barbell distance change sequence. The latter part of 

the sequence shows significant fluctuations, indicating that the barbell was effectively 

released. 

 

According to the analysis, the athlete finishes the first phase at the 10th frame, 

the fifth phase at the 54th frame, and the sixth phase at the 72nd frame. Efficiently 

executes a barbell lift during the sixth phase in the 89th frame, but then loses control and 

throws the barbell. According to Figure 4.24, the distance between the hand and the 

barbell surpasses the threshold after the 85th frame, suggesting a loss of grip. The 

alteration in distance resulted in the lift malfunctioning.  
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a) In the 10th frame of a weightlift b) In the 54th frame of a weightlift 

  

c) In the 72nd frame of a weightlift d) In the 89th frame of a weightlift 

Figure 4.21 Unsuccessful weightlifting screenshots  

 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 

2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5  

 

Figure 4.22  The results of unsuccessful weightlifting’s classified Phases (After the 

phase correction) 
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Figure 4.23 Classified phases of unsuccessful weightlifting 

 

 

Figure 4.24 The fluctuation in the distances between hands and a barbell 

  

This sample underwent several checks based on phase sequences and barbell 

handling: 1) The "Judge based on the holding period of the sixth phase" check was 

passed, failing to identify the abort caused by injury or unexpected events in 
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weightlifting. In fact the athlete had  sustained the lifting posture during the sixth phase 

for more than 1 second. 2) The "Judge based on the presence of all six phases in a phase 

sequence" check was passed. The athlete had finished all six phases of weightlifting. 3) 

The "Judge from six phases in order" check was passed. The athlete had completed all 

six phases that followed correct order. 4) The "Judge based on the ordered six phases, 

presence of all six phases and barbell slipping" check was not passed. The system 

identified the issue caused by injury or unexpected events in weightlifting. The athlete 

did not hold the barbell  in last frames of sixth phase of weightlifting. 5) The "Judge 

based on the ordered six phases, presence of all phases and the holding time for the sixth 

phase" check was passed, failing to identify the abort caused by injury or unexpected 

events in weightlifting. In fact the athlete had  sustained the lifting posture during the 

sixth phase for more than 1 second. 6) The "Judge based on the ordered six phases, the 

holding time for the sixth phase and the barbell slipping" check was not passed. The 

system identified the issue caused by injury or unexpected events in weightlifting. 

During the sixth phase of weightlifting, the athlete did not sustain holding the barbell 

for more than 1 second, and the distances between hands and a barbell were beyond the 

allowance. 

 

Therefore, the weightlifting failure video underwent testing utilizing six 

distinct methods. 2 methods correctly identified the fifth example as a weightlifting 

failure video, however methods M_SixHold, M_AllPhases, M_OrderPh, and 

M_OrderHold did not identify errors 

 

4.5 Determination of Snatch Weightlifting Success 

 

This section provided the detection results of 20 video samples, including of 

10 successful weightlifting attempts and 10 failure weightlifting attempts. The efficacy 

of each approach was assessed by its capacity to precisely distinguish between 

successful and unsuccessful snatch weightlifting attempts.  

 

 

 



 
 

86 

4.5.1 Accuracy of M_SixHold Method 

 

The method described in Section 3.5.9.1, titled "Judging based on the holding 

period of the sixth phase" was applied in this experiment. The ability to determine 

success or failure in weightlifting was 90% accurate. As shown in Table 4.4, the system 

incorrectly identified 10% of unsuccessful lifts as successful lifts. Example 5’s video 

provided the reason for the misidentification. 

 

Table 4.4 Accuracy of the "Judge based on the holding period of the sixth phases"  

                method 

               Prediction Result 

Actual Result 
Successful Lifting Unsuccessful Lifting 

Successful Lifting 100% 0% 

Unsuccessful Lifting 10% 90% 

  

4.5.2 Accuracy of M_AllPhases Method 

 

The method described in Section 3.5.9.2, titled "Judging based on the presence 

of all six phases in a phase sequence" was applied in this experiment. The accuracy of 

determining success or failure in weightlifting was 40%. As shown in Table 4.5, the 

system incorrectly identified 60% of unsuccessful lifts as successful lifts, indicating that 

the determination based on the presence of all six phases in a weightlifting sequence 

was not enough and resulted in a substantial decline in the ability to identify 

unsuccessful lifts. The reasons for the misidentification were explained in Examples 2–

5. 

Table 4.5 Accuracy of the "Judge based on the presence of all six phases in a phase  

                sequence" method 

                Prediction Result 

Actual Result 
Successful Lifting Unsuccessful Lifting 

Successful Lifting 100% 0% 

Unsuccessful Lifting 60% 40% 
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4.5.3 Accuracy of M_OrderPh Method 

 

The method described in Section 3.5.9.3, titled "Judge from six phases in order" 

was applied in this experiment. The accuracy of determining success or failure in 

weightlifting was 70%. As shown in Table 4.6, the system incorrectly identified 30% of 

unsuccessful lifts as successful lifts, indicating that the determination based on the six 

phases in order found in a weightlifting sequence was not enough. The reasons for the 

misidentification were explained in Examples 3–4. 

 

Table 4.6 Accuracy of the "Judge from six phases in order" method 

               Prediction Result 

Actual Result 
Successful Lifting Unsuccessful Lifting 

Successful Lifting 100% 0% 

Unsuccessful Lifting 30% 70% 

 

4.5.4 Accuracy of M_AllPhSlip Method 

 

The method described in Section 3.5.9.4, titled "Judging based on the presence 

of all six phases and barbell slipping" was applied in this experiment. The ability to 

determine success or failure in weightlifting was 80% accurate. As shown in Table 4.7, 

the system incorrectly identified 20% of unsuccessful lifts as successful lifts. The 

reasons for the misidentification were explained in Example 3. 
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Table 4.7 Accuracy of the "Judge based on the ordered six phases, presence of all six   

                phases and barbell slipping" method 

               Prediction Result 

Actual Result 
Successful Lifting Unsuccessful Lifting 

Successful Lifting 100% 0% 

Unsuccessful Lifting 20% 80% 

  

4.5.5 Accuracy of M_OrderHold Method 

 

The method described in Section 3.5.9.5, titled "Judging based on the ordered 

six phases, presence of all phases, and the holding time for the sixth phase" was applied 

in this experiment. The ability to determine success or failure in weightlifting was 90% 

accurate. As shown in Table 4.7, the system incorrectly identified 10% of unsuccessful 

lifts as successful lifts. The reasons for the misidentification were explained in Example 

5. 

 

Table 4.8 Accuracy of the "Judge based on the ordered six phases, presence of all phases  

                and the holding time for the sixth phase" method 

               Prediction Result 

Actual Result 
Successful Lifting Unsuccessful Lifting 

Successful Lifting 100% 0% 

Unsuccessful Lifting 10% 90% 

  

4.5.6 Accuracy of M_OrderSlip Method 

 

The method described in Section 3.5.9.5, titled "Judging based on the 

sequential six phases, the duration of the sixth phase, and the occurrence of barbell 

slipping" was applied in this experiment. The ability to determine success or failure in 

weightlifting was 100% accurate, suggesting the highest level of precision in identifying 

unsuccessful lifts compared to other approaches. 
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Table 4.9 Accuracy of the "Judge based on the ordered six phases, the holding time for  

                the sixth phase and the barbell slipping" method 

               Prediction Result 

Actual Result 
Successful Lifting Unsuccessful Lifting 

Successful Lifting 100% 0% 

Unsuccessful Lifting 0% 100% 

  

To sum up, Figures 4.25 and 4.26 revealed the accuracy of each method for 

judging successful and unsuccessful lifting videos. 

 

 

Figure 4.25  Accuracy of successful videos 

 

 

Figure 4.26  Accuracy of unsuccessful videos 
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Table 4.10 presents six distinct methodologies employed to assess the 

effectiveness of snatch weightlifting endeavors. The evaluation of these strategies was 

based on their capacity to effectively differentiate between successful and unsuccessful 

attempts. The method M_OrderSlip exhibited exceptional precision, attaining a flawless 

detection rate of 100%. The M_SixHold and M_OrderHold methods demonstrated 

impressive performance, each with an accuracy of 95%. The M_OrderPh method 

demonstrated a respectable accuracy of 85%, while the M_AllPhases method exhibited 

the lowest accuracy of 70%. 

 

Table 4.10 Accuracy of algorithms to determine snatch weightlifting success 

No. Algorithms Accuracy 

1 M_SixHold 95% 

2 M_AllPhases 70% 

3 M_OrderPh 85% 

4 M_AllPhSlip 90% 

5 M_OrderHold 95% 

6 M_OrderSlip 100% 

 

Table 4.10 shows that the M_OrderSlip algorithm achieved a 100% accuracy 

rate, while M_AllPhases only achieved a 70% accuracy rate. This discrepancy can be 

attributed to the nature of the test samples and the methods used by each algorithm. In 

the test samples, the majority of failed snatch weightlifting attempts still completed all 

six phases of the lift. This means that the M_AllPhases method, which evaluates the 

presence of all six phases in sequence, struggled to differentiate between successful and 

failed attempts accurately. The presence of all phases does not necessarily indicate a 

successful lift, leading to a lower accuracy rate for M_AllPhases. 

 



 

Chapter 5 

  

Conclusion and Recommendations 

 

 5.1 Conclusion 

 

This study encompassed a thorough research procedure aimed at identifying 

the success or failure of weightlifting in videos. The research method includes feature 

extraction, image classification, video sequence analysis, and the assessment of 

weightlifting success or failure.  

 

Through a comparative study of image classification techniques and the 

application of various logical approaches to the analysis of video sequences, we have 

achieved the following significant results: 1) Initially, we conducted a thorough 

comparison of various image classification algorithms to choose the most appropriate 

one for weightlifting image classification. This step served as a solid foundation for our 

later study. 2) By employing logical reasoning, we were able to correct several errors in 

identifying the weightlifting phases. 3) Furthermore, we examined the utilization of 

several logical methods in the analysis of weightlifting videos. Through the integration 

of image classification, phase correction, video sequence analysis, the proposed method 

could effectively determine the success in weightlifting attempts.  

 

This study provided a comprehensive method for the process of determining 

weightlifting videos, which produced remarkable results through analysis and 

experiments. The implications of our research are important for improving the accuracy 

of referees in weightlifting competitions. 
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5.2 Recommendations 

 

Extend the scope of the research to encompass a wider variety of scenes and 

lifting scenarios. Examine whether it is possible to obtain a more complete view of 

weightlifting movements by using multi-angle video recognition.  

 

The implementation of sequence analysis and prediction algorithms should be 

strengthened in order to obtain a deeper comprehension of weightlifting performances. 

Provide algorithms able to predict movement patterns and identify patterns indicating 

successful or unsuccessful lifts. 

  

5.2.1 Limitations 

 

Although our research has made notable progress in weightlifting analysis, it 

is important to highlight several limitations: 1) The use of truncated video in the analysis 

may disregard environmental influences. Future research should take into account the 

influence of environmental factors on judging weightlifting success. 2) The lack of 

sound recognition analysis impedes our understanding of the auditory cues present 

during weightlifting performances. Subsequent investigations should look into the use 

of sound recognition algorithms to get further contextual information. 

 

5.2.2 Future Outlook 

 

Examining the feasibility of implementing recognition systems on multiple 

platforms, including computers and smartphones running distinct operating systems. 

 

Conduct an in-depth analysis of the environmental aspects, such as crowd noise, 

lighting conditions, and competition atmosphere, to determine their influence on 

weightlifting performances. Incorporate environmental data into analysis frameworks 

to enhance the comprehension of performance dynamics. 
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By prioritizing these specific areas, future studies can potentially enhance the 

method to determine the success or failure of both snatch and clean and jerk 

weightlifting. Furthermore, expanding the understanding of weightlifting biomechanics 

can lead to more efficient training methods and strategies for improving performance. 
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