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Abstract

This research integrated computer vision and machine learning techniques to
objectively evaluate snatch weightlifting success. By leveraging MediaPipe for skeletal
detection and You Only Look Once (YOLO) object detection for barbell detection, the
study classified snatch into six phases. An artificial neural network (ANN) and support
vector machine (SVM) were applied to classify weightlifting phases from features
extracted using MediaPipe. The distances between an athlete’s hands and a barbell were
computed using the MediaPipe features, which represented the points on an athlete’s
right and left hands as well as the points on a barbell. This study employed different
methods to evaluate weightlifting success. For example, the method that used the
holding period of the sixth phase could obtain a 95% accuracy rate, whereas the method
that evaluated the presence of all six phases in sequence could derive a lower accuracy
of 70%. A method that evaluated the ordered six phases, the holding time of the sixth
phase, and the barbell slipping achieved the highest accuracy rate of 100%. The
proposed method, which did not require specialized equipment, could achieve notable
weightlift phase classification and efficiently determine the success or failure of snatch

weightlifting.
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Chapter 1

Introduction

1.1 Background of the Research

Weightlifting is considered one of the greatest tests of strength and power
(Ulareanu, Potop, Timnea & Cheran, 2014). Weightlifting is a global sport that is part
of the Olympics. People from all over the world follow the weightlifting tournament and
cheer on their athletes in the fight for gold. Weightlifting athletes attempt to successfully
lift the heaviest weights by lifting a barbell with weight plates up from the floor to
overhead. The snatch is one of the two main lifts used in weightlifting. The athlete lifts
the barbell up from the floor in a single movement (Géron, 2019).

1.2 Significance of the Research

This research was underscored by its comprehensive exploration of the
intersection between weightlifting, computer vision, and machine learning. The
integration of MediaPipe and YOLO in addressing pose and a barbell added a layer of
complexity and practicality to the study. The following points were investigated in this
study: 1) Snatch phase classification: By accurately identifying the six phases of snatch
lifting as shown in Table 1.1, the research provided a valuable tool for determining the
success of snatch weightlifting. 2) Success/Failure Detection: Training features based
on successful and failed lifts empowered the system to method classify attempts. The
method removed subjectivity from judging and provided immediate feedback to
athletes, enabling real-time adjustments and performance optimization. 3) Accessibility
and Generalizability: Because MediaPipe did not rely on specialized equipment.
Additionally, this research paved the way for adapting the system to other weightlifting

disciplines or even other sports altogether.



Table 1.1 Snatch weightlifting phases
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Source: Qi & Phoophuangpairoj, 2024

To integrate MediaPipe and YOLO, the study proposed a two-pronged
approach to tackle the challenges of snatch weightlifting analysis. 1) MediaPipe for
Skeletal Recognition: This open-source framework efficiently extracts skeletal
keypoints from video data, captures the athlete's movement patterns during the snatch
lifting. Analyzing these keypoints in relation to the six phases allows for phase
identification and technique evaluation. 2) YOLO for Barbell Detection: YOLQ's object
detection capabilities accurately locate the barbell in each frame, enabling its trajectory
and interaction with the athlete to be tracked. This information is crucial for

understanding barbell path, speed, and overall lift mechanics.

By extracting relevant features from successful and failed lift attempts, the
research aims to train a model that can method classify future lifts. This involves: 1)
Feature Identification: Key features such as the distance between hands and barbell were
extracted from both successful and failed lifts. 2) Model Training: These features were
used to train a machine learning model to distinguish snatch weightlifting phases which

were used for determining the weightlifting success or not.



Overall, this research presented a promising approach for applying computer
vision and deep learning to develop efficient methods to classify weightlifting phase
and determine the success or not by using MediaPipe and YOLO, this research has the
potential to help referees to judge whether the lifting is successful.

1.3 Significance of the Problem

The challenges associated with weightlifting analysis presented significant
barriers to effective training and performance improvement, impacting both
professional and amateur athletes. Addressing these issues holds immense potential for
athletes, coaches, and the sport as a whole. Here 's why: 1) Subjectivity in performance
evaluation: The current reliance on subjective judgments from coaches and judges leads
to inconsistencies and biases in technique assessment. 2) Addressing this challenge is
promising: Classification of successful and failed lifts eliminates subjectivity from
judging, ensuring fair and consistent evaluations, particularly in competitive settings,

benefiting both athletes and judges.
Therefore, the investigation of novel methods for objective, accessible analysis

of weightlifting, as proposed in this research, assumes significant importance in

advancing the sport of weightlifting as a whole.
1.4 Research Objectives

The research objectives include: 1) Develop a method for classifying the phases
of snatch weightlifting. 2) Develop a method for determining weightlifting success or

failure.

1.5 Scope of the Study

The scope includes: 1) Classify snatch weightlifting phases from images. 2)

Classify the success of snatch weightlifting based on short videos. 3) Use front-view



snatch weightlifting images and videos. 4) Weightlifting videos consisted of only the

weightlifting scenes.

1.6 Research Framework

The research framework includes: 1) Extract images from a snatch
weightlifting video. 2) Classify the extracted images into phases. 3) Detect a barbell in
a image. 4) Compute the distances between weightlifter’s hands and a barbell. 5) Based
on the list of recognized phase for each frame in the video sequence, determine the order
of the weightlifting video sequence, phase duration information, and assess the success
of the lift. 6) Determine the success in weightlifting based on the list of recognized phase
for each frame in the video sequence and the distance between weightlifter’s hands and

barbells.

1.7 Definition of Terms

Term 1 Skeleton behavioral recognition

Skeleton behavioral recognition utilizes principles from computer vision and
deep learning to detect and analyze human behavior (Patil, Rao, Utturwar, Shelke &
Sard, 2022). This process focuses on interpreting the positions and movements of
skeletal joints. In the context of weightlifting, it plays a crucial role in understanding
and assessing the biomechanics of athletes' movements during lifts. This study primarily
relied on information obtained from 33 key points, including the head, limbs, and torso,

using MediaPipe.

Term 2 Object recognition

Object recognition is a computer vision technology that identifies, detects, and
locates specific objects, items, or patterns within visual data, typically derived from
images or videos (Howard et al., 2017). Due to the unique characteristics of the barbell
in this study, the standard YOLO model is unable to detect and provide the position. To
overcome this limitation, a custom barbell model was trained using sampled images

from weightlifting videos. This ensures the effectiveness of recognizing weightlifting



actions and a barbell as well as provides reference data to determine the success or

failure of a lift.

Term 3 MediaPipe and YOLO integration

MediaPipe and YOLO were applied for skeletal feature extraction and object
detection, respectively. This study used MediaPipe to extract skeletal features of an
athlete and YOLO to detect a barbell.

Term 4 Image training model and feature training model

This study provided two image classification solutions for the detection
weightlifting phases. The image training model involves classifying images based on
different behavioral phases, trained using algorithms such as Convolutional Neural
Networks (CNNs). The feature-based models for phase classification were obtained
from extracted features using MediaPipe and YOLO which were trained using
algorithms such as ANN and SVM.

Term5 Landmark

Landmarks referred to the 33 skeletal coordinates and two barbell coordinates
extracted via MediaPipe. These landmarks played a crucial role in the research as they
form the features for classifying phases and determining the success or not.

Term 6 Snatch lifting phases

The phases of a snatch lift contain 1) the first pull, 2) the transition from the
first to the second pull, 3) the second pull, 4) the turnover under the barbell, 5) the catch
phase, and 6) rising from the squat position (and fully standing).

Term 7 Basic and extended features of weightlifting

The features are categorized into 3 groups: skeleton landmark coordinates (66
features, with 33 coordinates each along both the x and y axes); barbell landmark
coordinates (4 features, with 2 coordinates each along both the x and y axes). These 70

basic features were used for classifying weightlifting phases; additionally, there are 2



extended features representing the distances between each hand and the barbell, which

were used for determining success. The total number of features is 72.

Term 8 Distance between barbell and hand
The distance involves treating the two barbell points as a spatial vector. The
distances from the wrist points (landmarks 15 and 16 in MediaPipe) to the barbell vector
line were used to compute the closest distance between the hand and the barbell. Then
the distance was divided by the length of a barbell. A proportion threshold, such as 0.3,
indicated a dropped barbell. The diastace was applied to judge whether the barbell

slipped from hands.

Term 10 Sequence of a video
A video sequence consists of continuous frames from a weightlifting video. This
sequence was used in the snatch weightlifting classification and the determination of

weightlifting success.



Chapter 2

Literature Review

The recognition of weightlifting activities in this study encompasses image
recognition, behavioral recognition, skeleton detection, and object recognition. Image
recognition primarily relies on classification methods within CNN models. Behavioral
recognition involves the temporal analysis of results obtained from 2D CNN image
recognition, representing a process of temporal image sequence processing and analysis.
This temporal analysis encompasses object recognition and feature extraction. This part
covered weightlifting posture, image recognition, feature extraction and feature
classification, action recognition, skeletal recognition, and object recognition.

2.1 Weightlifting Posture

Several studies focused on classifying snatch lifting phases to improve
technique analysis. For example, (Korkmaz & Harbili, 2015; Korayem et al., 2010)
developed methods to accurately segment and evaluate each phase, enhancing feedback
for athletes and increasing the precision of performance assessments. They divided the

snatch weightlifting into six phases, as shown in figure 2.1.

Vertical reference line

Figure 2.1 Snatch weightlifting phases
Source: Korkmaz & Harbili, 2015; Korayem, Mustafa, Korayem & Amanati, 2010



2.2 Image Recognition

Image recognition, as a pivotal domain in computer vision, has undergone a
remarkable evolution over the years, shaping the landscape of visual perception and
paving the way for advancements in various applications. The history of image
recognition can be traced back to the early days of computer vision research when basic
pattern recognition techniques were employed to discern primitive features within

images.

The initial phase of image recognition primarily revolved around handcrafted
feature extraction methods, where researchers meticulously designed algorithms to
identify specific patterns or edges in images. However, these early approaches were
limited by their reliance on predefined features, making them susceptible to variations

in lighting conditions, scale, and orientation.

A transformative breakthrough occurred with the advent of machine learning
and the introduction of more sophisticated techniques in the late 20th century. The
emergence of CNNs marked a paradigm shift in image recognition, allowing systems to
automatically learn hierarchical representations of features directly from raw pixel data.
LeCun et al. (1998) examined the utilization of gradient-based learning in document

recognition, demonstrating its utility in advancing recognition technology.

The early 21% century witnessed the ascent of deep learning, further propelling
the capabilities of image recognition systems. Notably, the ImageNet large-scale visual
recognition challenge played a pivotal role, in the development of increasingly
sophisticated CNN architectures. Krizhevsky, Sutskever & Hinton (2017) investigated
the application of deep convolutional neural networks in image recognition and
achieved breakthrough results in the ImageNet challenge for large-scale visual

recognition.

Géron (2019) examined the developments in CNN architectures such as

AlexNet, VGGNet, and ResNet. These models significantly improved image



recognition and reduced top-5 error rates in competitions. AlexNet achieved a top-5
error rate of 17%, VGGNet introduced a simple yet effective architecture, and ResNet

pioneered residual learning for training extremely deep CNNs.

Despite these strides, challenges persist in image recognition. Robustness to
adversarial attacks, interpretability of complex models, and the need for large labeled
datasets are among the ongoing research fronts. Addressing these challenges is crucial
to enhancing the reliability and practical applicability of image recognition systems.

2.2.1 Background of Image Recognition

Image recognition technology is an important branch of computer science,
which studies how to extract information from images. Image recognition technology
has applications in many fields, including medical, transportation, security, etc. In the
field of weightlifting, image recognition technology has also been widely researched
and applied.

Early weightlifting image recognition technology was mainly used for
technical analysis of weightlifters. Researchers use image recognition technology to
analyze weightlifters' movements, postures, timing of force exertion, etc. to help athletes
improve their technical level. For example, Korayem (2010) examined a weightlifter’s
technical analysis method based on image recognition. This method could identify the
weightlifter’s starting posture, push-up, bench press and other actions, and provide

technical improvement suggestions.

With the development of image recognition technology, its application in the
field of weightlifting is becoming more and more extensive. In recent years, researchers
have made some progress in the application of image recognition technology to the field
of weightlifting. For example, Ulareanu et al. (2014) studied a weightlifting penalty
judgment method based on image recognition. This method can automatically identify
whether a weightlifter is overweight, whether he has landed, etc., and improves the

accuracy of penalty decisions. Olaya-Mira, Soto-Cardona, Palacio-Pefia and Acevedo-
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Tangarife (2020) studied a weightlifter training method based on image recognition.
This method can track the weightlifter's movement trajectory, analyze the weightlifter's

power output, etc., and help athletes train better.

The application of image recognition technology in the field of weightlifting is
still in its infancy. With the continuous development of image recognition technology,
its application in the field of weightlifting will become more extensive. Image
recognition technology will be more real-time and can analyze the movements and
postures of weightlifters in real time to improve the efficiency of judgment and training.
The technology is becoming more diverse and can be combined with other technologies
such as artificial intelligence, machine learning, etc. to improve the performance of an

application.

2.2.2 Characteristics of Image Recognition

Image recognition technology has a number of features that make it suitable
for application in weightlifting. These features include: 1) Accuracy: Image recognition
technology can automatically identify athlete movements with high accuracy. 2)
Efficiency: Image recognition technology can automatically perform judging and
training, improving work efficiency. 3) Objectivity: Image recognition technology can
avoid the influence of human factors, improving the objectivity of judging and training.
4) Diversification: Image recognition technology will become more diversified and can
be combined with other technologies, such as artificial intelligence, machine learning,
etc., to improve application effects.

2.2.3 Types of Image Recognition

Various image recognition architectures find applications in weightlifting, each
bringing distinct advantages to the field. These architectures include Géron (2019)
suggested: 1) Standard CNN models, with their established structures, serve as common
choices for weightlifting image recognition tasks. These models provide a benchmark

for comparison and excel at capturing essential features from weightlifting-related
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images. 2) ResNet, a sophisticated CNN architecture, stands out for its effectiveness in
diverse image recognition tasks. Despite its complexity, ResNet proves capable of
discerning intricate patterns within images, making it a robust choice for in-depth
weightlifting analysis. 3) MobileNet reduces the traditional convolution process used in
standard convolutional neural networks to a depth-wise separable convolution, which

comprises of depth-wise and point-wise convolution.

This diverse array of architectures allows for a comparative analysis of their
practical model accuracies, paving the way for the selection of optimal models for
subsequent research endeavors. The consideration of complexity, efficiency, and

adaptability ensures a well-rounded approach to weightlifting image recognition.

2.3 Feature Extraction and Feature Classification

Feature extraction and feature classification play pivotal roles in the realm of
machine learning and pattern recognition, apply to the accurate and efficient analysis of

complex data.

2.3.1 Historical Overview of Feature Extraction and Classification

Traditional Methods: Lowe (2004) introduced a method for extracting
distinctive image features. During this period, feature extraction heavily relied on
traditional techniques such as SIFT, SURF, and HOG, often coupled with classical
machine learning algorithms like SVM and KNN (K-Nearest Neighbors) for
classification. While these methods found extensive use in tasks such as image
processing and object recognition, they required manual feature engineering and
struggled with complex datasets.

Emergence of Deep Learning: Krizhevsky et al. (2017) achieved significant
results in the ImageNet classification task using deep convolutional neural networks.
The advent of deep learning, notably with the introduction of CNNs like AlexNet in
2012, marked a paradigm shift in feature extraction and classification. Deep learning
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models enabled the extraction of abstract and hierarchical features directly from raw

data, eliminating the need for handcrafted features.

End-to-End Learning and Pre-trained Models: Howard et al. (2017) proposed
MobileNets, an efficient convolutional neural network architecture for mobile and
embedded vision applications. The focus shifted towards end-to-end learning and the
utilization of pre-trained deep learning models. Models such as VGG, ResNet, and
BERT, pre-trained on large datasets, learned universal feature representations and were

directly applied to classification tasks, yielding significant performance improvements.

Self-Supervised Learning and Reinforcement Learning: Chen, Kornblith,
Norouzi and Hinton (2020) presented a simple framework for contrastive learning of
visual representations. Recent advancements have seen increased interest in self-
supervised learning and reinforcement learning for feature extraction and classification.
These methods leverage inherent data structures or agent-environment interactions to

learn effective feature representations, promising further breakthroughs in the field.

2.3.2 Background of Feature Extraction and Classification in This Study

In the context of this study, feature extraction and classification are integral to
recognizing weightlifting activities. By transforming raw video and image data into
meaningful features, it is possible to accurately classify different stages and techniques
of weightlifting. This involves using both handcrafted features and features learned

through deep learning models.

For this study, focus on extracting spatial and temporal features from
weightlifting videos. Spatial features capture the static aspects of the scene, such as the
positions and orientations of the weightlifter and the barbell. Temporal features, on the

other hand, capture the dynamic aspects, such as the movement trajectories over time.

To classify these features, employ models such as SVMs and ANNs. SVMs are

chosen for their robustness in handling high-dimensional data and their effectiveness in
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binary and multiclass classification tasks. ANNs, particularly deep neural networks, are
utilized for their ability to learn complex, hierarchical representations of data, which are

essential for capturing the intricate patterns in weightlifting movements..

2.3.3 Characteristics of Feature Extraction and Classification

Characteristics include: 1) Automated Feature Learning: Modern deep learning
models can automatically learn relevant features from raw data, significantly reducing
the need for manual feature engineering. 2) High Accuracy: Methods like SVMs and
ANNs have demonstrated high accuracy in classification tasks, making them suitable
for complex applications like weightlifting recognition. 3) Scalability: These methods
can handle large datasets and high-dimensional feature spaces, making them scalable
for extensive weightlifting analysis. 4) Computational Complexity: Training deep
learning models and SVMs can be computationally intensive, requiring significant
computational resources. 5) Data Dependency: The performance of these models
heavily depends on the quality and quantity of the training data. Poor data quality can
lead to suboptimal model performance. 6) Interpretability: Deep learning models,
particularly deep neural networks, often operate as "black boxes," making it challenging

to interpret the learned features and understand the decision-making process.
2.3.4 Types of Feature Extraction and Classification
2.3.4.1 Feature Extraction Methods
Feature extraction methods such as Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), and CNNs play crucial roles in various
computer vision frameworks like MediaPipe and YOLO.
MediaPipe and YOLO are widely used frameworks for tasks like

object detection, pose estimation, and hand tracking. They leverage advanced feature

extraction techniques to analyze and process visual data effectively.
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In MediaPipe, which is a popular framework for real-time perception
tasks, CNNs are often employed to extract features from input images or video frames.
These features are then used for tasks such as hand tracking, pose estimation, and facial
recognition. The hierarchical features learned by CNNs through convolutional layers

enable accurate and efficient detection and tracking of objects and body parts.

YOLO, which is an efficient object detection framework, utilizes
CNNs to extract features from images or video frames. These features are then processed
to detect and classify objects in real-time. YOLO's architecture is optimized for speed
and accuracy, making it suitable for applications requiring fast and precise object

detection.

In both MediaPipe and YOLO, the choice of feature extraction method
depends on the specific task requirements, computational resources, and desired level
of accuracy. While CNNs offer powerful feature extraction capabilities, they may
require significant computational resources and may overfit with limited data. On the
other hand, techniques like PCA and LDA provide dimensionality reduction and
classification capabilities but may not capture complex spatial hierarchies present in

images as effectively as CNNs.

2.3.4.2 Feature Classification Methods

SVM: SVMs are find the optimal hyperplane for classifying data into
different categories. They are effective in high-dimensional spaces and are used for both

classification and regression tasks.

ANNSs: An ANN consists of interconnected layers of neurons that can
learn complex patterns in data. They are highly flexible and can be adapted for various

classification tasks.
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KNN: KNN is a simple, instance-based learning algorithm that
classifies data points based on the majority class of its k-nearest neighbors. It is easy to

implement and effective for small datasets.

SVM offers robust classification in high-dimensional spaces but can
be sensitive to the choice of kernel and parameters. ANN, which includes deep neural
networks, provides flexibility and can capture complex patterns; however, it requires
large amounts of labeled data and substantial computational resources for training. KNN
is simple and effective for small datasets but can be computationally intensive during
inference and is sensitive to noise. Each method has its advantages and limitations in

feature classification.

2.4 Action Recognition

2.4.1 Action Recognition

Action recognition, a pivotal domain within computer vision, has witnessed
substantial evolution over distinct phases, each characterized by diverse methodologies
and approaches. In its nascent stages, researchers predominantly embraced conventional
techniques such as Improved Dense Trajectories (IDT) Xu, Zhou, Yuan and Huang
(2021) examined relying on manually engineered features and traditional machine
learning for classification. While intuitive, these methods faced limitations in adapting

to intricate scenarios and diverse movements.

The advent of deep learning has ushered in a new era for action recognition,
with 2D CNNs standing out as a pivotal technology. Researchers have effectively
utilized CNNs to extract spatial features from video frames, thereby significantly
improving the precision in recognizing intricate movements. However, the intrinsic
focus of 2D CNNs on static images imposes limitations on their ability to model
temporal information, Wang, Lu, Jin and Hu (2022) examined, particularly in the
context of actions characterized by dynamic variations. To address this, the integration

of 2D CNNs with temporal image sequence processing and analysis proves instrumental,
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synergistically enhancing the method's capability to capture and interpret temporal
dynamics. This combined approach, leveraging both spatial and temporal information,
stands as a robust strategy for achieving more nuanced and accurate action recognition,

especially in scenarios involving dynamic variations.

In action recognition, 3D CNNs excel in capturing temporal dynamics for
weightlifting, while Two-Stream Networks concurrently process RGB and optical flow
streams, adapting to complex scenarios. Their practical adoption varies, with ongoing

refinement for optimal performance in weightlifting studies.

Feichtenhofer, Pinz and Wildes (2016) examined the practical adoption of
these methodologies using multiple methods, noting that the choice of methodology
varies based on the specific requirements of the recognition task and the intricacies of
weightlifting movements. Researchers and practitioners leverage these approaches in
diverse applications, each offering a unique set of advantages and challenges. In this
research, 2D CNNs with temporal sequence analysis will be predominantly leveraged,
showcasing a dynamic interplay that reflects ongoing exploration and refinement to

tailor these methodologies for optimal performance in weightlifting studies.

2.4.1.1 Time Series Analysis

Time Series Analysis is a statistical technique that deals with time-
ordered data. Its primary goal is to understand the underlying structure and patterns
within the data to make forecasts, detect anomalies, or extract meaningful insights. Time
series data are typically collected at successive points in time, spaced at uniform
intervals, and can be represented as a sequence of data points indexed in time order.
Action recognition integrates spatial features and is geared towards understanding
dynamic activities in video, whereas time series analysis is more focused on uncovering

temporal patterns and making predictions based on numerical time-ordered data.
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2.4.1.2 Processing of Action Recognition and Time Series

Action recognition involves collecting video data containing various
actions, preprocessing it to reduce noise and normalize frames, and then extracting
spatial and temporal features using algorithms like CNNs or Optical Flow. These
features are classified using machine learning or deep learning models such as 2D CNNSs,
3D CNNs, LSTMs (Donahue et al., 2015; Feichtenhofer et al.,2016), or Two-Stream
Networks (Simonyan & Zisserman, 2014). The results are refined in the post-processing

step to enhance accuracy.

Time series analysis involves collecting sequential data points over
time, preprocessing to clean and prepare the data, and extracting meaningful features
using statistical methods like Fourier Transform and Wavelet Transform. Base above,
Aralimarad, Meena and Mallapur (2020) examined, Models such as ARIMA, LSTM,
RNN, or TCNs are then applied for forecasting or pattern detection, including
programmatic logic for decision-making, followed by post-processing to analyze,

validate, and refine the model outputs.

2.4.2 Types of Action Recognition

2.4.2.1 Direct Video-based for Action Recognition

3D CNNs: 3D CNNs directly process video data by convolving over
spatial and temporal dimensions, allowing them to capture both spatial and temporal
features. This method analyzes motion patterns and recognizes actions directly from
video sequences. The output of 3D CNNs includes action labels for classification or
features describing specific actions in video segments, providing insights into the

recognized actions within the video.

Two-Stream  Networks: Two-Stream Networks simultaneously
process RGB video frames and optical flow data. By utilizing parallel streams, they

capture both spatial and temporal information, enabling a comprehensive analysis of
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motion patterns in videos. The output of Two-Stream Networks consists of action labels
for classification or features describing specific actions in video segments, offering a
detailed understanding of the actions present in the video, incorporating both spatial and

temporal information.

Improved Dense Trajectories (IDT): IDT extracts dense trajectories
from video sequences and analyzes motion patterns using handcrafted features such as
optical flow, HOG, and HOF. This method focuses on capturing detailed motion
trajectories to characterize different actions present in the video. The output of IDT is
motion trajectory features used as inputs to subsequent classifiers for action recognition.
These features provide detailed information about the motion patterns within the video,
aiding in the accurate identification of actions.

2.4.2.2 Feature Extraction of Sequence Analysis for Action

Recognition

Optical Flow: Optical flow detects motion between consecutive
frames in a video, extracting motion patterns. It directly analyzes the pixel-level changes
between frames to identify movement, providing valuable insights into object motion
within the video. The output comprises optical flow features capturing the motion of

objects, which serve as a basis for further sequence analysis.

Improved Dense Trajectories (IDT): IDT extracts dense trajectories
from video sequences and integrates them with handcrafted features such as optical flow,
HOG, and HOF. By combining multiple motion descriptors, IDT provides a
comprehensive representation of motion trajectories in the video. The output includes
trajectory features containing information about motion trajectory, direction, and speed,

facilitating detailed analysis of motion patterns.

CNN: CNNs extract spatial features from single-frame images or
image sequences by applying convolutional and pooling operations. They analyze the

visual content of video frames to capture essential features such as edges, textures, and
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shapes. The output consists of image features representing various visual elements
present in the video frames, enabling subsequent sequence analysis based on these

extracted features.

Two-Stream Networks: Two-Stream Networks combine RGB images
with optical flow features to process both spatial and motion information in videos. By
incorporating information from both streams, these networks capture a comprehensive
understanding of video content. The output comprises features that integrate spatial and
motion information, providing a holistic representation of the video content for further

sequence analysis.

Handcrafted Features: Handcrafted features such as HOG and HOF
describe motion and texture information in video frames using predefined algorithms.
These features capture specific characteristics of the video content, such as object
motion and visual patterns. The output includes handcrafted features utilized for
subsequent classification or recognition tasks, offering valuable insights into the visual

attributes of the video content.

2.4.2.3 Further Sequence Analysis for Action Recognition

LSTM Networks: LSTM networks process feature data extracted from
images or videos, specializing in modeling long-term dependencies within time
sequences. Their architecture, comprising memory cells and gating mechanisms, allows
them to retain and utilize information over extended periods, enabling the capture of
complex temporal patterns in video data. The outputs of LSTM networks, such as time
sequence predictions, classification labels, or descriptions of specific action occurrence
times within the video data, offer valuable insights into the temporal dynamics and

patterns present in the video sequences.

Temporal Convolutional Networks (TCNs): TCNs focus on
processing feature data extracted from videos or images, leveraging one-dimensional

convolutions to capture patterns within time sequences effectively. By utilizing a series
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of convolutional layers, TCNs extract hierarchical features from the input data, enabling
robust modeling of temporal relationships. The outputs of TCNs, including time
sequence predictions, classification labels for different actions, or descriptions of action
occurrence times within the video data, facilitate the understanding and interpretation

of temporal patterns and dynamics encoded in the video sequences.

Recurrent Neural Networks (RNNs): RNNs, including variants like
GRUs, excel at processing feature data extracted from videos or images and are tailored
to model temporal dynamics within time sequences. By maintaining internal state
representations that evolve over time, RNNs capture sequential patterns and
dependencies efficiently, enabling the extraction of context and temporal relationships.
The outputs of RNNs, such as time sequence predictions, classification labels for
different actions, or descriptions of action occurrence times within the video data,
provide valuable insights into the temporal evolution of events and actions captured in

the video sequences.

2.4.2.4 Integrated Approach for Action Recognition

An integrated approach leveraging open-source components such as
MediaPipe and YOLO for both direct video-based action recognition and feature
extraction for further sequence analysis. This approach combines the functionalities and
benefits of Direct Video-based Action Recognition and Feature Extraction for Further

Sequence Analysis, providing a comprehensive solution for processing video data.

Utilizing MediaPipe and YOLO, extract rich spatial and temporal
features from video data. MediaPipe offers efficient solutions for pose detection, hand
tracking, and facial recognition, providing detailed information about human actions
and interactions within the video frames. YOLO, on the other hand, facilitates object
detection and tracking, enabling the identification and localization of relevant objects or
subjects in the video scenes. By integrating these components, achieve robust feature
extraction, capturing both high-level semantics and fine-grained details from the video

content.
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The extracted features are then passed through a Features Dataset
Logical Analysis Layer (FDLAL), which functions similarly to LSTM and RNNSs but
involves code logic for analysis. The FDLAL processes the sequential feature data,
capturing temporal dependencies and patterns present in the video sequences. By
leveraging code logic, enhance the sequence analysis process, enabling dynamic
decision-making based on predicted action sequences and contextual insights derived

from the video data.

2.4.3 Characters of Types of Action Recognition

2.4.3.1 Direct Video-based for Action Recognition

Characters include: 1) Processes video data directly, which simplifies
the workflow by eliminating the need for additional feature extraction steps. 2) Methods
like 3D CNNs or Two-Stream Networks are capable of capturing both spatial and
temporal features in videos, leading to improved accuracy in action recognition. 3) Can
directly output classification labels or features of video segments, enabling rapid
identification and analysis of specific actions. 4) High computational costs are incurred
when dealing with large-scale video data, requiring significant computing resources and
time. 5) For complex behaviors like weightlifting, deeper video analysis and model
optimization may be necessary to achieve satisfactory results. 6) Susceptibility to the
influence of video quality and environmental factors, necessitating high-quality data for

accurate recognition.

2.4.3.2 Feature Extraction of Sequence Analysis

Characters include: 1) Extracts video features using methods like
optical flow or Improved Dense Trajectories (IDT), capturing richer spatial and
temporal information for a more comprehensive understanding of video content. 2)
Allows for the extraction of different features tailored to different types of behaviors,

enhancing the flexibility and applicability of action recognition methods. 3) Suitable for
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scenarios requiring further analysis of time sequence data, such as determining action
frequency, speed, duration, etc. 4) Requires additional feature extraction steps, which
increases the complexity of the processing workflow and computational costs. 5) High
requirements for algorithm and parameter selection during feature extraction,
potentially requiring tuning for different datasets and scenarios. 6) The quality and
effectiveness of feature extraction are influenced by factors such as algorithm selection
and parameter settings, necessitating careful design and debugging to ensure optimal

performance.

2.4.3.3 Integrated Approach for Action Recognition

Characters include: 1) Comprehensive Solution: By leveraging open-
source components such as MediaPipe and YOLO, the approach combines the
functionalities of direct video-based action recognition and feature extraction for
sequence analysis. This integration provides a holistic solution for processing video
data, addressing both spatial and temporal aspects of action recognition. 2) Rich Feature
Extraction: Utilizing MediaPipe and YOLO enables the extraction of rich spatial and
temporal features from video data. MediaPipe offers efficient solutions for pose
detection, hand tracking, and facial recognition, while YOLO facilitates object detection
and tracking. This comprehensive feature extraction captures both high-level semantics
and fine-grained details from the video content, enhancing the analysis capabilities. 3)
Robust Sequence Analysis: The extracted features are passed through a Features Dataset
Logical Analysis Layer (FDLAL), which involves code logic for analysis. This layer
captures temporal dependencies and patterns present in the video sequences, enabling
robust sequence analysis. By leveraging code logic, the approach enhances the sequence
analysis process, facilitating dynamic decision-making based on predicted action

sequences and contextual insights derived from the video data.

The integrated approach offers a versatile and effective solution for
video-based action recognition and sequence analysis, providing enhanced feature

extraction and robust temporal analysis capabilities.
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2.5 Skeletal Recognition

Skeletal recognition has evolved as a critical component in the trajectory of
action recognition, providing a profound understanding of human movements. In the
early stages, Improved Dense Trajectories (IDT) and traditional machine learning
techniques were primary tools for action recognition, yet they faced challenges in
capturing the intricate dynamics of skeletal movements.

The paradigm shifted with the advent of deep learning, ushering in innovative
approaches to skeletal recognition. A notable contribution came from Wei, Ramakrishna,
Kanade and Sheikh (2016), who introduced a model leveraging Convolutional Pose
Machines (CPM) for accurate human pose estimation, signifying a significant leap in

sophisticated skeletal representation.

Advancements continued with the exploration of recurrent neural networks
(RNNSs) and long short-term memory networks (LSTMS) in skeletal modeling. Ren, Liu,
Ding and Liu (2024) and Saoudi, Jaafari and Andaloussi (2023) demonstrated the
effectiveness of an LSTM-based approach in capturing temporal dependencies,

underscoring the importance of sequential skeletal information in action recognition.

The inclusion of 3D pose estimation techniques, exemplified by Berretti et al.
(2018), added a layer of depth to skeletal recognition. This advancement enabled models
to comprehend not only spatial configurations but also the three-dimensional aspects of

human poses.

Recent strides in skeletal recognition involve the fusion of skeletal data with
RGB information. Kong, Deng and Jiang (2021) showcased a two-stream network that
effectively integrated skeletal and RGB features, contributing to enhanced action

recognition.

The advent of frameworks such as MediaPipe and YOLO has introduced new

dimensions to skeletal recognition. MediaPipe provides a comprehensive solution for
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face, hand, and pose detection, while YOLO offers real-time object detection
capabilities, influencing the fusion of skeletal and visual information in action

recognition systems.

In essence, the evolution of skeletal recognition has transitioned from
traditional methods to sophisticated deep learning approaches, progressively refining

the understanding of human actions through nuanced skeletal representations.

2.5.1 Characteristics of Skeletal Recognition

The characteristics of skeletal behavior recognition encompass several key
features that contribute to the effectiveness of this approach: 1) Temporal Dynamics:
Skeletal behavior recognition excels in capturing the temporal dynamics of human
movements, allowing for a detailed analysis of actions unfolding over time. 2) Spatial
Configuration: The method provides a comprehensive understanding of the spatial
configuration of human poses, enabling precise recognition and interpretation of
intricate movements. 3) Depth Information: With the integration of 3D pose estimation
techniques, skeletal behavior recognition incorporates depth information, enhancing the
model's ability to perceive the three-dimensional aspects of human poses. 4) Sequential
Dependency: Models leveraging recurrent neural networks (RNNs) and long short-term
memory networks (LSTMs) demonstrate a capacity to understand sequential
dependencies in skeletal data, crucial for accurate action recognition. 5) Integration with
RGB Data: Recent advancements involve the fusion of skeletal data with RGB
information, offering a holistic approach to action recognition by combining the
strengths of both modalities.

These characteristics collectively make skeletal behavior recognition a
powerful and nuanced approach, particularly in the context of weightlifting studies

where understanding both spatial and temporal aspects of movements is essential.
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2.5.2 Benefits of MediaPipe Skeletal Recognition

MediaPipe brings several benefits to the field of skeletal behavior recognition,
making it a valuable tool for comprehensive action analysis: 1) Multi-Modal
Capabilities: MediaPipe supports multi-modal skeletal tracking, allowing for the
simultaneous analysis of various body parts and movements. This capability enhances
the richness of skeletal data for a more detailed understanding of actions. 2) Integration
with Diverse Applications: The versatility of MediaPipe allows for seamless integration
with diverse applications. Whether applied to fitness tracking, gesture recognition, or
interactive experiences, MediaPipe's capabilities extend beyond skeletal behavior
recognition, adding value to a range of domains. 3) Community Support and
Development: MediaPipe benefits from an active community and ongoing development
efforts. This ensures the continuous improvement of the framework, with updates, new
features, and optimizations that contribute to its effectiveness in skeletal behavior
recognition. 4) Cross-Platform Compatibility: MediaPipe offers cross-platform
compatibility, supporting applications across different devices and operating systems.
This flexibility enhances the accessibility and usability of the framework in various

settings.

2.6 Object Recognition

Object recognition has-evolved as a critical facet in the landscape of action
recognition, playing a pivotal role in understanding weightlifting movements and
enhancing the overall comprehension of complex scenarios. In the early stages of
research, authors like LeCun et al. (1998) and Viola and Jones (2001) laid the
groundwork for object recognition with landmark works on CNNs and cascaded

classifiers.

Over time, the domain has witnessed a paradigm shift towards more
sophisticated deep learning techniques, particularly in the context of weightlifting
studies. Renowned authors such as Krizhevsky et al. (2017) introduced the

groundbreaking AlexNet, significantly advancing the capabilities of CNNSs in object
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recognition tasks. This marked a turning point, as the enhanced depth and complexity
of deep neural networks proved instrumental in discerning and classifying objects within

weightlifting scenes.

The advent of region-based CNNs (R-CNNs) Girshick (2015) and their
subsequent improvements Faster R-CNNs Ren et al. (2016), brought about substantial
improvements in both accuracy and efficiency. These approaches revolutionized object
recognition by introducing region proposal networks, allowing for selective and focused
analysis of specific regions in images, a crucial aspect in weightlifting scenarios where

the emphasis is on key objects like barbells and body postures.

Noteworthy contributions by authors like Redmon, Divvala, Girshick and
Farhadi (2016) with the introduction of YOLO models and the subsequent evolution to
YOLOv3 Redmon and Farhadi (2018) further streamlined object detection tasks. YOLO
models, with their real-time processing capabilities, proved valuable in dynamically
recognizing and tracking relevant objects during weightlifting activities.

The field of object recognition in weightlifting studies has recently witnessed
the integration of advanced frameworks like MediaPipe, as demonstrated by authors
such as Lugaresi et al. (2019). MediaPipe, with its multi-modal skeletal tracking and
object recognition capabilities, adds an additional layer of sophistication to the analysis,

enabling a more holistic understanding of weightlifting scenes.

2.6.1 Benefits of Yolo Object Recognition

YOLO object recognition within the context of weightlifting studies present
notable features that contribute to its effectiveness in identifying and analyzing objects
such as barbells and body postures. These characteristics include: 1) Bounding Box
Predictions: YOLO provides accurate bounding box predictions around detected objects,
enabling precise localization. This characteristic is particularly valuable in weightlifting
scenarios where identifying the exact location of objects like barbells is crucial for a

detailed understanding of the lifting process. 2) Multi-Class Recognition: YOLO
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supports multi-class object recognition, allowing the model to simultaneously identify
and classify various objects within the scene. In weightlifting studies, this feature
enables the recognition of different components such as barbells, body positions, and
other relevant entities. 3) Robustness to Object Size Variations: YOLO exhibits
robustness in handling variations in object sizes. In the context of weightlifting, where
the size and position of barbells and body postures can vary, this characteristic ensures
that the model can adapt to diverse scenarios commonly encountered in training or
competition settings. 4) Accuracy Estimation: YOLO provides mechanisms for
accuracy estimation, allowing practitioners to assess the reliability of object recognition
results. This characteristic is essential in weightlifting studies, where precise
identification of barbells, body postures, and other elements contributes to the accuracy
of performance analysis. 5) Customization Capabilities: YOLO offers customization
options, enabling researchers and practitioners to tailor the model to specific
requirements of weightlifting scenarios. This includes the ability to fine-tune the model
on a dataset that reflects the nuances and variations present in weightlifting activities,
enhancing the model's adaptability to the unique characteristics of this domain.



Chapter 3

Research Methodology

3.1 Introduction

In the realm of weightlifting behavior analysis, the determination of snatch
weightlifting success requires a multifaceted approach that integrates advanced machine
learning techniques and pose landmark features. To provide insight about the steps used
throughout this process, the steps to determine the success of snatch weightlifting are
illustrated in Figure 3.1.

Snatch weightlifting

videos
Extracted images
from a video
l Images
ExfiCteilipgso Detected a barbell
landmark features

T
Barbell boundary

Pose landmark features Exracted points cn

the detected barbell

ﬁ Points on the barbell

Classify snatch phases using a
machine learning classifier

[
Sequence of snatch phases

Phase correction

lSequence of snatch phases

Aligned sequence of snatch

phases
Compute distances between \

hands and points on the barbell

Determine snatch weightlifting
success

l

Success/failure in
snatch weightlifting

Figure 3.1 Steps to determine the success of snatch weightlifting
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Figure 3.1 showed the method for determining success in snatch weightlifting.
First, extract images from a video. The pose landmark features were extracted. A barbell
was detected and the barbell features consisting of 2 points on it were extracted. The
pose landmark features and the barbell features were combined and used to classify the
snatch weight lifting phases. After a sequence of weight lifting phases was determined,
the phases were corrected or aligned using rules. On the other hand, the distance between
hands and a barbell was calculated from the features extracted from each image. Finally,
the distances of the hands from the barbell and the aligned phase sequence were used to
determine success in snatch weightlifting.

To create more understanding, the steps to detect a barbell, classify snatch
phases using machine learning classifiers, and determine snatch weightlifting success

were shown in Figures 3.2-3.4.
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Figure 3.2 Steps to detect a barbell
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Figure 3.2 showed the steps for detecting a barbell using the YOLO object
detection model. First, frames were extracted from weightlifting videos and converted
into still images. Then these images were annotated with bounding boxes to label the
barbell. A YOLO model’s configuration file was edited to set training parameters, and
the model was trained using the annotated images. Once trained, the model could detect
barbells in the videos. Fanally, the features, which were the coordinates of two points

on the left and right sides of the barbell, were computed from the bounding box.

Pose landmarks features

] A sequence of snatch
SVM and ANN classifiers }—b phases

Figure 3.3 Steps to classify snatch phases using machine learning classifiers

Points on the barbell o

Figure 3.3 illustrated the steps to classify snatch phases using SVM and ANN
classifiers. Initially, images were extracted from weightlifting videos, and features such
as pose landmarks and points on the barbell were detected and computed. These features
were fed into the SVM and ANN classifiers. The outputs from these classifiers were
used to determine the sequence of snatch phases, which enabled a detailed analysis of
the weightlifting process.
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Figure 3.4 Steps to determine snatch weightlifting success

Figure 3.4 showed how to use video analysis to determine the success of a
snatch weightlifting attempt. The aligned sequence of snatch phases, the shortest
distance between hands and a barbell were used as features to determine snatch
weightlifting success. The process involved verifying the holding of the sixth phase for
at least one second, ensuring the completion of all six phases in order, and ensuring
proper barbell handling. Additional checks included confirming the sixth phase's holding
time and checking a barbell's slip. Each criterion helped assess whether the lift was

successful.

3.2 Study Design

The research adopted a comprehensive methodology, incorporating advanced
tools and techniques for an in-depth analysis of weightlifting performances. The central
focus involved the intricate process of classifying weightlifting behaviors, estimating
datasets for image and feature data models, customizing the YOLO model training
process, and designing the expansion of feature values. Additionally, the study

encompassed the design of weightlifting success/failure determination functionalities.
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Due to the complexity of the research process, the study was divided into two
main parts: 1) Images and features classification snatch weightlifting: This part of the
research focuses on classifying weightlifting images and features using various methods.
The aim was to explore the feasibility of feature classification and provide reliable
results for distinguishing different phases of the snatch weightlifting. 2) Determining
the success in snatch weightlifting: Building on the feature classification, this part
involves researching the factors that determine the success or failure of snatch
weightlifting attempts. The objective is to develop a robust model that can accurately

classify and predict successful and failed lifts based on extracted features.

3.2.1 Classification of Images and Features in Snatch Weightlifting

This part of the research focuses on collecting videos from various snatch
weightlifting and extracting images from these videos. The images were then classified
into six phases of the snatch lift using two different approaches. The first approach
involved training CNN models, such as MobileNet and VGG16, for image classification.
The second approach utilized skeletal recognition and object detection to extract feature
data, which was then used to train SVM and ANN models for feature classification. This

will be base for research of determining the success in snatch weightlifting.

3.2.2 Determination of the Success in Snatch Weightlifting

Extract images from video: This step involved capturing individual frames
from a video recording of snatch weightlifting performances. These frames served as
the basis for further analysis, allowing researchers to extract key features and

information from each frame to understand the dynamics of the weightlifting movement.

Extract pose landmark features: Pose landmark features refered to specific
points or landmarks on the athlete's body that were indicative of their posture and
movement during the snatch weightlifting competition. These features were extracted
using tools MediaPipe, which could detect and track key points like joints and limbs

throughout the video frames.
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Detect a barbell: In this step, the presence of a barbell in each frame was
detected using object detection techniques. YOLO was employed for this purpose,

allowing for accurate identification and localization of the barbell within the frame.

Extract points on the detected barbell: Once the barbell was detected, specific
points on the barbell were extracted. These points included the positions of the barbell
2 ending sides relevant landmarks that provided additional information about the

weightlifting movement.

Classify snatch phases using a machine learning classifier: The extracted pose
landmark features and barbell features were combined and used as input to a machine
learning classifier. This classifier was trained to recognize and classify different phases
of the snatch weightlifting movement based on the features extracted from each frame.
The classifier assigned a phase class to each frame, indicating the phase of the lift that

the athlete is currently in.

Phase correction: After the initial classification of snatch weightlift phases, a
phase alignment process was employed to correct or refine the sequence of classified
phases. This part involved applying rules or algorithms to ensure that the sequence of
phases was consistent and accurately reflected the progression of the weightlifting

movement.

Compute distances between hands and points on the barbell: The distances
between the athlete's hands and specific points on the barbell were computed using the
extracted pose landmark features and barbell features. These distances provided
valuable information about the athlete's grip and positioning relative to the barbell
throughout the lift.

Determine snatch weightlifting success: Determine snatch weightlifting
success: The computed distances between hands and points on the barbell, along with
the aligned phase sequence, were used to determine the success of the snatch

weightlifting performance. This determination considered the correctness and
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completeness of the phase sequence, ensuring that all phases are present and in the
correct order. Additionally, the analysis evaluated whether the duration of the
weightlifting conforms to regulatory standards, ensuring that the weightlifting was
performed within the designated time frame.

3.3 Instruments

Adobe Premiere: This video editing tool was essential for clipping and
preparing complete weightlifting sequences from competition scenes, forming the basis

of the research dataset.

Labellmg: Used as a marking tool for object recognition, it was employed to
annotate barbell positions in training images. It was use for training the barbell detection

model and ensuring accurate object recognition.

MediaPipe: This framework was utilized to extract skeletal features from
videos, providing a detailed analysis of athletes' movements during the weightlifting

process.

YOLO: As an object detection tool, YOLO identified and located the barbell
in the images. This data, combined with skeletal recognition, allowed for accurate
calculation of distances between the athlete and the barbell, which was essential for

performance assessment.

Python: Python was chosen as a programming language for integrating various
components of the research, including object detection and skeletal recognition
frameworks. Python was also used to write machine learning code necessary for model

training and testing.

scikit-learn: This additional Python module was used in building the machine

learning models required for classifying the different phases of snatch weightlifting.
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3.4 Data Collection

The research involved two main aspects: images and features classification and
determining the success in snatch weightlifting. To support these studies, three distinct
datasets were used: 1) Image Classification Dataset: This dataset was based on 50
successful snatch weightlifting videos and the images extracted from these videos. It
was used to train image classification models, employing CNNs such as MobileNet and
VGG16, as well as SVM and ANN for feature classification. 2) Barbell Detection
Dataset: Comprising 20 successful weightlifting videos and annotated barbell images,
this dataset was utilized to train the YOLO model for accurate barbell detection in
various weightlifting scenarios. 3) Success Determination Dataset: The dataset included
20 weightlifting videos (10 successful and 10 failed videos), as well as the images used
for training models to classify weightlifting phases and detect barbells. It was used for
the research and analysis focused on determining the success or failure of snatch
weightlifting attempts, providing a balanced representation of both outcomes.

These datasets collectively enabled the detailed analysis and model training
necessary for classifying weightlifting phases and assessing performance outcomes. The
details were shown in Table 3.1.
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No. [ Dataset Name Description Number of Data
Original data 50 videos
1 Image Training For training 3644 images
For testing 1331 images
Original data 50 videos
2 Feature Extraction For training 3644 images
For testing 1331 images
Original data 50 videos
3 Feature Training For training 3644 images
For testing 1331 images
Original data 20 videos
4 Barbell Training For training 2078 images
For testing 4975 images
Successful videos 10 videos, 1228
images

5 Success Determination

Failed videos

10 videos, 1265
images

3.4.1 Image Training and Feature Extraction

The initial phase of data collection involved extracting relevant information

from front-view videos of various weightlifting competitions. A total of 50 successful

snatch weightlifting videos were selected for analysis. The videos were subjected to

preprocessing steps, including resizing all frames to a standardized resolution of

224x224 pixels. This standardization ensured consistency in the dataset, a crucial factor

for subsequent model training and extraction.

3.4.2 Feature Training

The dataset comprised 3,644 images extracted from the training videos for

training model, with a balanced distribution across the six predefined phases.

Additionally, a separate dataset for testing purposes was created, consisting of 1,331

images from 16 successful snatch weightlifting videos.
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3.4.3 Barbell Training

The YOLO model for barbell detection was trained and optimized using a
specially created dataset. The 2,078 images in the dataset were taken from various
weightlifting frames extracted from videos. Each image was carefully annotated to
highlight the precise position of the barbell.

This specialized dataset played a pivotal role in enhancing the YOLO model's
proficiency in recognizing barbells within the weightlifting context. By training on this
dedicated dataset, the model gained the capability to accurately detect and locate

barbells in real-world weightlifting scenarios.

3.4.4 Success Determination for Weightlifting Sequence Videos

In preparation for weightlifting sequence analysis, two subsets of videos were
meticulously selected: 1) Successful videos subset: Comprising 10 videos, this subset
contributed a total of 1228 images for analysis. These videos captured successful
executions of weightlifting movements, providing insights into well-performed actions.
2) Failed videos subset: Consisting of 10 videos capturing unsuccessful attempts, this
subset contributed a total of 1265 images. The inclusion of failed attempts offered a
comprehensive understanding of the challenges and difference in weightlifting motions.

The combination of these subsets formed a robust dataset for weightlifting
sequence analysis, ensuring a balanced representation of both successful and

unsuccessful scenarios. This diversity was essential for a nuanced exploration of

temporal dynamics and accurate classification during subsequent analysis.

3.5 Data Analysis

3.5.1 Algorithm Parameters for Weightlifting Phase Classification

This section first introduced the parameter configuration of the algorithm

model for snatch phase classification, then it expanded on the study of determining
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whether weightlifting is successful or unsuccessful. The classification of the snatch

phase is a crucial basis for determining the success or failure of weightlifting.

Including: 1) SVM parameters: Used a linear kernel function for its
classification. 2) ANN architecture: The ANN consisted of an input layer, a hidden layer
with 128 neurons and ReL.U activation, and an output layer with 6 neurons and softmax
activation. 3) CNN Architecture: The CNNs comprised of 3 convolution layers. Each
layer used 32 filters to extract image features. The flatten layer transformed the features
into a one-dimensional vector passed through the ANN. The ANN, which was a part of
the CNN, consisted of 64 hidden nodes and 6 output nodes. 4) ResNet50 Architecture:
ResNet-50 was utilized. The top section of the ResNet-50 featured a global average
pooling layer, a dense layer with 64 hidden nodes, a 0.2 dropout layer, a dense layer
with 64 hidden nodes and a RelL.U activation function, and a 0.2 dropout layer. 5)
MobileNet Architecture: MobileNetVV3 was implemented. The top section of the
MobileNetV3 featured a global average pooling layer, a dense layer with 64 hidden
nodes, a 0.2 dropout layer, a dense layer with 64 hidden nodes and a ReL U activation

function, and a 0.2 dropout layer.

Based on the above models, weightlifting behavior classification was achieved.
The next part of the research focused on classifying weightlifting video sequences to
identify successful and failed lifts.

3.5.2 Extract Images from a Video

Images were extracted using 15 Olympic snatch weightlifting videos. Then
they were resized to 224 x 244 pixels. The resized images were used as a source to
extract MediaPipe features.

3.5.3 Extract Pose Landmark Features

In the feature extraction, MediaPipe was used to extract pose landmark features

from images (Kukil, 2021). The features and their descrptions were shown in Table 3.2.
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No. MediaPipe Descriptions

1 NOP X Nose Positions Value in X Axis

2 NOP Y Nose Positions Value in Y AXis

3 LEIP X Left Eye Inner Positions Value in X Axis
4 LEIP Y Left Eye Inner Positions Value in Y AXis
5 LEP X Left Eye Positions Value in X Axis

6 LEP Y Left Eye Positions Value in Y Axis

7 LEOP X Left Eye Outer Positions Value in X Axis
8 LEOP Y Left Eye Outer Positions Value in Y AXis
9 REIP X Right Eye Inner Positions Value in X Axis
10 REIP Y Right Eye Inner Positions Value in Y AXis
11 REP X Right Eye Positions Value in X Axis

12 REP_Y Right Eye Positions Value in Y Axis

13 REOP X Right Eye Outer Positions Value in X Axis
14 REOP Y Right Eye Outer Positions Value in Y AXis
15 LEARP X Left Ear Positions Value in X Axis

16 LEARP Y Left Ear Positions Value in Y Axis

17 REARP_X Right Ear Positions Value in X Axis

18 REARP Y Right Ear Positions Value in Y Axis

19 MLP X Mouth Left Positions Value in X Axis

20 MLP_Y Mouth Left Positions Value in Y Axis

21 MRP_X Mouth Right Positions Value in X Axis
22 MRP Y Mouth Right Positions Value in Y Axis
23 LSP X Left Shoulder Positions Value in X Axis
24 LSP Y Left Shoulder Positions Value in'Y Axis
25 RSP X Right Shoulder Positions Value in X Axis
26 RSP Y Right Shoulder Positions Value in Y Axis
27 LEP X Left Elbow Positions Value in X Axis

28 LEP Y Left EIbow Positions Value in Y Axis

29 REP X Right Elbow Positions Value in X Axis
30 REP Y Right Elbow Positions Value in Y Axis
31 LWP X Left Wrist Positions Value in X Axis

32 LWP Y Left Wrist Positions Value in Y Axis

33 RWP X Right Wrist Positions Value in X Axis

34 RWP Y Right Wrist Positions Value in Y AXxis

35 LPP X Left Pinky Positions Value in X Axis

36 LPP Y Left Pinky Positions Value in Y AXxis

37 RPP X Right Pinky Positions Value in X Axis

38 RPP Y Right Pinky Positions Value in Y Axis

39 LIP X Left Index Positions Value in X AXis

40 LIP Y Left Index Positions Value in Y AXis

41 RIP_X Right Index Positions Value in X Axis




Table 3.2 Features obtained from MediaPipe and their descriptions (cont.)
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No. MediaPipe Descriptions

42 RIP Y Right Index Positions Value in Y AXxis

43 LTP X Left Thumb Positions Value in X Axis

44 LTP Y Left Thumb Positions Value in Y Axis

45 RTP X Right Thumb Positions Value in X Axis
46 RTP Y Right Thumb Positions Value in Y Axis
47 LHP X Left Hip Positions Value in X Axis

48 LHP Y Left Hip Positions Value in Y Axis

49 RHP X Right Hip Positions Value in X AXis

50 RHP Y Right Hip Positions Value in Y Axis

51 LKP X Left Knee Positions Value in X Axis

52 LKP Y Left Knee Positions Value in Y Axis

53 RKP X Right Knee Positions Value in X Axis

54 RKP Y Right Knee Positions Value in Y Axis

55 LAP X Left Ankle Positions Value in X Axis

56 LAP Y Left Ankle Positions Value in Y AXxis

57 RAP X Right Ankle Positions Value in X Axis

58 RAP Y Right Ankle Positions Value in Y Axis

59 LHP X Left Heel Positions Value in X Axis

60 LHP Y Left Heel Positions Value in Y Axis

61 RHP_X Right Heel Positions Value in X Axis

62 RHP Y Right Heel Positions Value in Y Axis

63 LFIP X Left Foot Index Positions Value in X Axis
64 LFIP Y Left Foot Index Positions Value in Y AXis
65 RFIP X Right Foot Index Positions Value in X Axis
66 RFIP_Y Right Foot Index Positions Value in Y Axis

3.5.4 Detect a Barbell

The Yolo 7.0 algorithm was utilized to identify and locate a barbell. The

outcome consisted of four (X,y) coordinates representing the corners of a rectangle that
encloses the identified barbell (Kathuria, 2022; Chernytska, 2022). Figure 3.5
demonstrates an instance of barbell detection using Yolo.
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Figure 3.5 Detected barbell

3.5.5 Extract Points on the Detected Barbell

After acquiring the container that outlines the perimeter of a barbell. Two
points are derived from the four coordinates (x,y) of the box.

The YOLO detector outputed a bounding box that consisted of four absolute
position coordinates. These coordinates reflected the positions of the top-left and
bottom-right corners of the bounding box. Two points were derived from the four
coordinates (x,y) of the box. In order to determine the midpoints of the left and right
sides of a "barbell" shaped bounding box, it began by identifying the corners of the
bounding box. Next, calculated the midpoint on the left side by taking the average of
the coordinates of the two left corners. Similarly, calculated the midpoint on the right
side by averaging the coordinates of the two right corners by using the following
algorithm.

The steps include: 1) Extract the identified items from the YOLO detection
data and locate the specific object labeled as "barbell”. 2) Retrieve the precise positional
coordinates of the four corners of the bounding box that encompasses the "barbell”
object. 3) Determine the coordinates that lie exactly in the middle between the left and
right coordinates of the bounding box of the "barbell™.
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Figure 3.6 Compute P1 and P2 points from a barbell box

The midpoints between the left and right coordinates of the "barbell” using the
following method. Given: The points A(Xa,Ya), B(Xb,Yb), C(Xc,Yc) and D(Xd,Yd)
were absolute position coordinates of the four corners of the bounding box surrounding
the "barbell" object. The midpoints P1 and P2 between the left and right coordinates of
the "barbell" were P1(|Xc-Xa|/2,|Yc-Ya|/2) and P2(]Xd-Xb|/2,[Yd-Yb|/2).

The barbell features consisting of the left and right coordinates of the midpoints
P1and P2 (LBX, LBY, RBX and RBY) were described in Table 3.3.

Table 3.3 Barbell features

No. Ballbell features Descriptions

1. LBX Left Barbell x axis value
2. LBY Left Barbell y axis value
3. RBX Right Barbell x axis value
4, RBY Right Barbell y axis value

3.5.6 Classify Snatch Phases Using a Machine Learning Classifier

The 70 features (33*2+2*2 features), which consisted of x axis and y axis of
33 skeleton landmarks and 2 barbell position points, were classified using SVM and
ANN into six phases(Makdoun, 2022).
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3.5.7 Correct Phases

The system classified a sequence of images extracted from a video into six
phases. However, in fact, some errors were found in the phase classification results.
Therefore, the rules shown in Table 3.4 were applied to correct a sequence of classified
phases. According to the rules, the five consecutive classified phases were used as

information to determine the probable phases.

Table 3.4 Rules applied to correct sequences of phases

Same
Different
Fixed
N | Classified phases Corrected phases
o Frmt | Frmt+1 | Frmt+2 | Frmt+3 | Frmt+4 | Frmt | Frmt+1 | Frmt+2 | Frm t+3 | Frm t+4
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Table 3.4 Rules applied to correct sequences of phases (cont.)

Classified phases

Corrected phases

No.

27

Remark: Frm t was the phase classification result of the frame or image at time t.

The algorithm to correct phases was explained as follows:

Given

P : A sequence of classified weightlifting phases (po, p1, p2, ... pT)

T: Last time that the phase was classified

i: Classified weightlifting phase number

fori=0to T-4

Apply the rules to correct the classified weightlifting phases pi to pi+4
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The phase correction process aimed to resolve classification errors within the

weightlifting video sequences. After correction, the corrected phase sequence was used

to determine success in weightlifting.

3.5.8 Compute distances between hands and points on a barbell

The system also used the distances between hands and points on a barbell to

determine whether a lifting was successful or not. The method for calculate the distances

between hands and points on a barbell is shown in Figure 3.7.
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Figure 3.7 Compute the distance between a hand and a barbell

The distances between hands and points on a barbell were computed using the
following steps:

Find a linear equation: ax+by+c = 0 given two points, A(x1, y1) and B(x2, y2)
by using the following equation.

(Y1 —Y2)X + (X2 = X1)y + (X2y2 — X2y1) = 0 (3-1)

Find a distance PE: The distance between the line ax+by+c = 0 and the point
PE (xs, y3), where a, b and c are real numbers and both a and b cannot be zero, can be
calculated using the following equation.

lax3+bys+c|

PE === (3-2)
Calculate a distance AB using the following equation.
AB = /(% = x1)? + (v, — ¥1)? (3-3)
Calculate a relative distance PErelative
PE
PE;eiative = 7= (3-4)

AB
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The PEreiative Values for both left and right hands were calculated and used as
features (DIS_LEFT, DIS_RIGHT) to represent the distances between barbell and hands,
as described in Table 3.5.

Table 3.5 Extended features

No. Barbell features Descriptions
1. DIS LEFT Distance between barbell and left hand
2. DIS RIGHT Distance between barbell and right hand

The distance between the hands and a barbell (DHB) was computed using the
following equation.
DHB = max(DIS_LEFT, DIS_RIGHT) (3-5)
The value of DHB used to judge whether the barbell slip from hands.

3.5.9 Determination of Snatch Weightlifting Success

Several comprehensive approaches to determining weightlifting success are
presented here. The evaluation process included several criteria, including: the duration
of the hold in the final phase, the completeness and order of the six phases, and the
presence of any barbell slippage. Each criterion is systematically analyzed to determine
weightlifting success. Figure 3.8 showed the classification results that contained all six
weightlifting phases while in Figure 3.9, the classification results contained only three
weightlifting phases. Phase classification was applied because successful lifting must

include all six phases.

coj,o0;,0,0;0}j0}0|0}]0/0}]0|0O]0O|0O]0]|O0
1111222222 |2 |3|3|3|3|4]4
4 |4 |14 |4 |4 |44 (4|44 |4(5]|5]5|5]5
S| S5 |5|5|5|5|5|5|5]|5|5|5|5|5|5]|5
5|5 |5 |5|5|5|5|5|5|55|5|5|5]|5]|5
S| 5|5 |5|5]|5|5]|5

Figure 3.8 Show a result contained all six weightlifting phases
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Figure 3.9 Show a result contained only three weightlifting phases

3.5.9.1 Judge based on the holding period of the sixth phase

The algorithm for calculating the holding time of the sixth phase and
checking whether the holding time was more than threshold_hold_time was

explained as follows:

Given the phase sequence shown in Figure 3.10 which contained 45 frames of

the sixth phase and the parameters as shown in Table 3.6.

0|1 0(0 |0 @0 40404 i00RRVY | 0540|00]|0
1|1 | 122 & MNENSREYs &334 |4
4 | 4 | 4 [l 4| 4|4 F4A0 404 | A5 | 5555
5|5 (5 |5MYDo4 5.5 | S5 LN5|5|5|5 5|5
Sl 5 [ 5 | 5[5 | 5™ 5 | 5 (5|5 (5| SHESEE
5|/5|5|5|5|5|5|5
Figure 3.10 A phase sequence
Table 3.6 Parameters for calculating the holding time of the sixth phase
No. | Name Description
An array representing a classified phase
1 phase_seq_array sequence of a video

(e.g. a phase sequence shown in Figure 3.10)
The number of 6™ phase frames

(e.g. 45 in Figure 3.10)

threshold_hold_time (in | Threshold of holding time for the sixth phase.
seconds) (e.g. 1 second)

2 num_6™ phase
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Steps:
Count the number of frames in the sixth phase (phase number 5) in

phase_seq_array, then divide it by a frame rate-- to get the holding time, T_6th_phase.

T_6th_phase = Z—othphase (3-6)

rame_rate

Given frame_rate equaled 30 frames/second, based the phase sequence in
Figure3.7, T_6th_phase can be calculates as:

T_6th_phase= gz 1.5 seconds (3-7)

Check if T_6th_phase is less than threshold_hold_time seconds; if so, return

False, otherwise return True.

if(T_6th_phase<threshold_hold_time)
return False
else:
return True (3-8)

Because T_6th phase was greater than 1, the method returns True and passed
checking. The T_6th_phase was determined exclusively from the number of sixth
phases, as this method did not take into account the distance between the hands and a
barbell.
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3.5.9.2 Judge Based on the Presence of all six phases in a Phase

Sequence

This part explained the algorithm for counting the number of frames for
each phase and judging whether each phase contains more than two frames. A
sequence in which a phase spanned fewer than two frames was judged to be a

missing phase sequence.

N INIDN |- | O | O
NN NN OO
NN NN O | O
NN NIDN| O | O
N TN NN O | O
NN NN O | O
N TR T D | O | O
N DN NN O | O
N TN NN O | O
N TN NN - | O
NN NN |- | O
N TN NN - | O
NN NN - | O

NN NN, |O O
NI NN, |O|O

NN NN RO | O

2 SN | D
Figure 3.11 Missing phase in the phases sequence (marked in red)

Given the phases in a phase sequence and the parameters for judging
whether each phase contains more than two frames, as shown in Figure 3.11 and
Table 3.7.

Table 3.7 Parameters for counting the number of frames for each phase
No. | Name Description

An array representing a classified phase
1 phase_seq_array sequence of a video
(e.g. a phase sequence shown in Figure 3.11)

2 | threshold_times_phase | Threshold of the minimum appearance time for
B B each phase in a video sequence (e.g. 2)

Steps:
Count the number of each phase in phase_seq_array

Check if any phase is shorter than threshold_times_phase
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If there is every phase is shorter than threshold_times_phase, consider it as
False (unsuccessful).
If every phase is longer than threshold_times_phase, consider it as True

(successful).

So Figure 3.11 shows that the classification leaded to the absence of the

fourth, fifth and sixth phases.
3.5.9.3 Judge From Six Phases in Order
The part explained the algorithm for judging whether a video sequence contains

all phases (0~5) in ascending order. For a phase sequence as shown in Figure 3.12, the

algorithm was described as follows:

0|0 (0 | /Om OO U | F4/lg"lgl0 0|0 | 0|0
o,0,0,0}j0}0}0}0}|0O}0O{O|O0O|O0O|0]O0]O0
cojo;,0j0}0}jo;o0y0;j00}0)0;]010;0/|0O0
o,0,00}j0¢0/0}1 142,112,122 ]|1]1
1112 |2 2331000 V38 | Bl
213 |93 &V HMAREnRREY &1 01000
0100 0O, 0| OBy 05 B0 YRORAO | QO | O (O | O

Figure 3.12 Phases in a phase sequence (Disordered parts were marked red)

As shown un Table 9, Parameters for judging whether a video sequence
includes all phases (0~5) in the ascending order

Table 3.8 Parameters for checking the order of frames for each phase
No. [ Name Description

An array representing a classified phase sequence
1 phase_seq_array | of 3 video (e.g. a phase sequence shown in Figure
3.12)
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The steps to check whether a video sequence contains all phases (0~5) in the
ascending order were described below. The method checked whether a lower value

phase value was observed later in the array.

Steps:

Check whether the sequence in phase_seq_array included all phases from 0 to
5 in ascending order by scanning every element in the array using index (i) from 0 to
the number of elements in the array — 1 (len(phase_seq_array) — 1), the check should

complete once the fifth phase has been verified.

If any element does not follow the ascending order, return False.

If every element follows the ascending order, return True.

for i =0 to len(phase_seq_array) — 1
if (phase_seq_array[i] > phase_seq_array[i + 1]
or (phase_seq_array[i+1]- phase_seq_array[i])>1)
and phase_seq_array[i]<5:
return False

return True

Thus, Figure 3.12 shows that the classify feature result does not follow correct
order (not pass checking) and the sequence was determined as unsuccessful

weightlifting.

3.5.9.4 Judge Based on the Ordered six Phases, Presence of all six

phases and Barbell slipping

This method checked the presence of all six phases and the distance between
hands and a barbell until the last maximum phases obtained from the phase classification.
Figures 3.13-3.14 showed the last maximum phase was found at the 82" frame. The

distances, as shown in Figure 3.15, were checked from the first frame to the 82" frame,
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and it was found that the distances were above a threshold, indicating that the barbell

was out of control and fell.

Image Frame No.

c,oy,o0(0(0j0jO0O|]O|O|O|jO|O|O|O|O]O
co,0,0,0}j0j0|0O}jO0O}|O}|O|O|O|O0O|0]|]0]O
c,oy,o0(0(0j0jO0O|]O|O|Oj]O|O|O|O|O0O]0O
o,0/j]0,0}0}j0|0}17}j212(1}j2|12(1]1]|1
1(1}2|2,2}3|3|5|5|5|5|3|]3|1|1)1
2/3|5,3(3|3|,4(3|4|3|1]0|]0(0}0]0O0
o,0/|0,0(0}|]0|0O(0O}|O0O|0O|0O}]0O0O]O0O|0]O
Figure 3.13 Phase fluctuation shown in a red area
Phase Sequence
.
I:%Z
O
1

Figure 3.14 A curve in the red area of the graph shown the classified phase

fluctuation
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Figure 3.15 The fluctuation in the distances between hands and a barbell

Table 3.9 Parameters for judging the correct order and presence of all phases and

determining whether a video sequence contains barbell slipping
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No. | Name

Description

1 phase_seq_array

An array representing a classified phase sequence of
a video
(e.g. a phase sequence shown in Figure 3.13)

2 dis_seq_array._ left

A sequence of distances between the left hand and a
barbell (e.g. one side hand distance sequence in
Figure 3.15)

3 dis_seq_array_right

A sequence of distances between the right hand and
a barbell (e.g. one side hand distance sequence in
Figure 3.15)

4 threshold_times_phase

A minimum appearance time threshold for every
phase in a video sequence (e.g. 2)

5 num_cont_frms

The number of consecutive frames that a hand is left
off a barbell (e.g. 3)

6 threshold_dis_val

The threshold for determining whether a hand is left
off a barbell (e.g. 0.3)

The steps for checking that all phases are present and in the correct order (see
subsections 3.5.9.2 and 3.5.9.3), and whether a hand is left off a barbell.

Steps:
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Judge whether each phase contains more than 2 frames from an array,

phase_seq_array (see subsection 3.5.9.2).

Check whether a video sequence contains all phases in the correct order using

an array, phase_seq_array (see subsection 3.5.9.3).

From dis_seq_array_left, find the number of consecutive frames that a hand
stays away from a barbell using the distances between the left hand and a barbell. The
frame in which the distance between the right hand and a barbell is greater than

threshold_dis_val is counted as a frames in which a hand is left off a barbell.

Use the same method to check the slipping of a barbell from the right hand.

Find the last maximum phase position or frame.

Check the distances between hands and a barbell from the first frame to the last
maximum phase position or frame. If a distance was detected as greater than a threshold,

a barbell is considered to have fallen or slipped.

3.5.9.5 Judge Based on the Ordered six Phases, Presence of all Phases

and the Holding Time for the sixth Phase

In this part, the algorithm not only checks for the correct order and presence of
all phases (see subsections 3.5.9.2 and 3.5.9.3), but also calculate the holding time of
the sixth phase and check whether the holding time was more than threshold_hold_time

second (see subsections 3.5.9.1).
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Figure 3.16 Data shown all phases in the correct order and sufficient holding time for

Classified Phase
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Figure 3.17 All phases in the correct order with sufficient holding time for the

sixth phase in a sequence

Table 3.10 Parameters for judging the correct order and presence of all phases and for

checking whether the holding time of the sixth phase was at least 1 second

No. [ Name Description

1 | phase_seq_array An array representing a classified phase sequence of
o a video (e.g. a phase sequence shown in Figure 3.16)

2 | threshold_times_phase | A minimum appearance time threshold for every

phase in a video sequence (e.g. 2)
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Table 3.10 Parameters for judging the correct order and presence of all phases and for

checking whether the holding time of the sixth phase was at least 1 second

(cont.)
No. | Name Description
3 | num_6"_phases The number of frames classified as the 6" phase

(e.g. 45 in Figure 3.10)
4 | threshold hold time | Threshold of holding time for the sixth phase.
- (e.g. 1 second)

The steps to verify that all classified phases were and appeared in the correct
order, as well as the holding time of the sixth phase, were at least "threshold_hold_time"

seconds (see subsection 3.5.9.1).

Steps:
Judge whether each phase contains more than 2 frames from an array,

phase_seq_array (see subsection 3.5.9.2).

Check whether a video sequence contains all phases in the correct order using

an array, phase_seq_array (see subsection 3.5.9.3).

Use the phase_seq_array array to assess whether the calculated sixth phase lasts
longer than a threshold_hold_time (see subsection 3.5.9.1).

Judge whether the computed sixth phase holding time more than a time
threshold in seconds (threshold hold_time) using an array, phase_seq_array (see
subsection 3.5.9.1).

If all the above conditions were met, it is considered as a successful lifting.

Otherwise, it is considered as an unsuccessful lifting.

Thus, Figures 3.17-3.18 show that the results of the classified features follow
the correct order and contain all phases. The holding time of the sixth phase of more

than one second indicated that the sequence was a successful weightlifting attempt.
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3.5.9.6 Judge Based on the Ordered six Phases, the Holding Time for
the sixth Phase and the Barbell Slipping

In this part, the algorithm not only checks for the correct order and presence of
all phases (subsections 3.5.9.2, 3.5.9.3, and 3.5.9.1), and verifies whether the barbell
was held for longer than threshold _hold_time seconds. It also makes sure the weight
does not slip during the sixth phase of the phase sequence. This method included the
distance between the hands and a barbell. The sixth phase holding time in this method
was different from the first method, in which the holding time was calculated from only
a phase sequence. This method calculated the time from the first sixth-phase frame to
the last sixth-phase frame in which the distance between hands and a barbell was not
greater than a threshold.
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Figure 3.18 The fluctuation in the distances between hands and a barbell
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Table 3.11 Parameters for judging the correct order and presence of all phases, verifying

whether the barbell was held for longer than threshold_hold_time seconds,

and ensuring that the barbell does not slip during the sixth phase of the phase

sequence
No. | Name Description
1 | phase_seq_array An array representing a classified phase sequence of
a video (e.g. a phase sequence shown in Figure 3.16)
) A sequence of distances between the left hand and a
2 | dis_seq_array_left barbell (e.g. one side hand distance sequence in
Figure 3.18)
] ) A sequence of distances between the right hand and a
3 |dis_seq_array_right | parpell (e.g. one side hand distance sequence in
Figure 3.18)
4 | threshold_times_phase | A minimum appearance time threshold for every
B B phase in a video sequence (e.g. 2)
5 | num cont frms The number of consecutive frames that a hand is left
- off a barbell (e.g. 3)
6 | threshold dis val The threshold for determining whether a hand is left
™ off a barbell (e.g. 0.3)
7 | num_6" phases The number of frames classified as the sixth phase
- (e.g. 45 in Figure 3.11)
8 | threshold hold time | Threshold of holding time for the sixth phase.

(e.g. 1 second)

The steps to check the correct order and presence of all phases, and verify

whether the barbell was held for longer than threshold_hold _time seconds (subsections
3.5.9.2, 3.5.9.3, and 3.5.9.1). Step 4 ensures that the barbell does not slip during the

sixth phase of the phase sequence.

Steps:

Judge whether each phase contains more than 2 frames from an array,

phase_seq_array (see subsection 3.5.9.2).

Check whether a video sequence contains all phases in the correct order using

an array, phase_seq_array (see subsection 3.5.9.3).
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Use phase_seq_array array and the distance between the hands and a barbell to
calculate the time from the first sixth-phase frame to the last sixth-phase frame in which

the distance between hands and a barbell was not greater than a threshold.

Checks whether the calculated sixth phase lasted longer than a
threshold_hold_time.

If all the above conditions were met, it is considered as a successful lifting.

Otherwise, it is considered as an unsuccessful lifting.

Thus, Figures 3.17, 3.14 and 3.19 showed that the classified feature results
follow the correct order and presence of all phases, the holding time of the sixth phase
was more than 1 second, and the barbell does not slip during the sixth phase in the phase
sequence (passing parts of the checking items), determining the sequence as a successful

weightlifting attempt.

3.5.10 Validation Sample Strategies Design for Determination Methods of
Weightlifting

This section designed a test strategy for detecting the success or failure in
snatch weightlifting from wvideos. It included 20 weightlifting attempt videos,
comprising 10 successful and 10 failure scenarios. Specifically, the failure videos
exhibit various error cases. The goal was to catalog all error scenarios occurring in real
contests and rank them based on their likelihood in real-life situations. Weightlifting
failure videos were divided into five categories, as shown in Table 3.12.

Table 3.12 Examples of weightlifting failure videos and checking methods used

Example No. Description

Example 1 Six distinct checking methods were used to test it. Six methods
successfully identified the failure.
Example 2 Six distinct checking methods were used to test it. Five methods

successfully identified the failure, whereas only M_AllIPhases failed to
detect the failure.
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Table 3.12 Examples of weightlifting failure videos and checking methods used (cont.)

Example No. Description

Example 3 Six distinct checking methods were used to test it. Three methods
successfully identified the failure, whereas M_AllIPhases, M_QOrderPh,
and M_AlIPhSlip failed to detect the failure.

Example 4 Six distinct checking methods were used to test it. Three methods
successfully identified the failure, whereas M_AllPhases, M_QOrderPh,
and M_AlIPhSlip failed to detect the failure.

Example 5 Six distinct checking methods were used to test it. Two methods
successfully identified the failure, whereas M_SixHold, M_AllPhases,
M OrderPh and M QrderHold failed to detect the failure.

Table 3.13 The samples video of weightlifting attempts

Video Sample | Description

FWS1~FWS4 | This sample video was an Example 1 type video, showcasing a
common weightlifting mistake where failure occurred due to the
omission of important phases. There were four test samples within
this category, representing the most common error scenario.
FWS5~FWS7 | This sample video was the Example 2 type video, representing the
second most common error scenario. After completing all essential
phases, the lifter experienced a failure or chose to abandon the last
phase. This category included three test samples that allow for the
validation of all methods, except for the M_AllPhases method,
which identifies the absence of some phases.

FWS8 This sample video was the Example 3 type video, representing a
rare occurrence of a mistake with only one test sample. The sample
was utilized to assess the efficacy of method M_AlIPhSlip in
detecting slippage of a barbell.

FWS9 This sample video was an Example 4 video type, which was a rare
error situation used to evaluate the performance of the last phase
holding time method-based techniques M_SixHold and
M_OrderHold.

FWS10 This sample video was an Example 5 video type, demonstrating
another rare error situation. This video evaluates the performance of
two techniques, M_SixHold and M_OrderHold, which are based on
the last phase holding time method.

SWS1~SWS3 | These videos showed the athlete at a greater size, which made it
easier to see their facial expressions and movements.
SWS4~SWS10 | These videos showed the athlete at a smaller size and focused on the
overall continuity of the athlete's movements.

SWS1~SWS4 | Weightlifting competition at the Rio Olympics, with a green
background color in the weightlifting venue

SWS5~SWS7 | Weightlifting competition at the Tokyo Olympics, with a red
background color in the weightlifting venue
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Table 3.13 The samples video of weightlifting attempts (cont.)

Video Sample | Description

SWS8~SWS10 | Weightlifting competition at the Beijing Olympics, with a blue
background color in the weightlifting venue

SWS1~SWS7 | Men's heavyweight weightlifting competition, with many weights
loaded and a barbell length of 2.2 metres

SWS8~SWS10 | Women's lightweight weightlifting competition, with fewer weights

loaded and a barbell length of 2.15 metres

Remark: FWS means "failure weightlifting sample,” and SWS means "successful

weightlifting sample."”



Chapter 4

Results and Discussion

The results were divided into 5 parts: 1) Weightlifting phase classification. 2)
Weightlifting phase correction. 3) Calculating distances between hands and a barbell. 4)
Determining success or failure in weightlifting sequences. 5) Determine snatch
weightlifting success

4.1 Weightlifting Phase Classification

Weightlifting phase classification is an important part of the research. The
image classification methods consisting of CNN, MobileNet, and ResNet50 were
applied to directly distinguish weightlifting phases from images. On the other hand, the
features extracted by using MediaPipe were used with ANN and SVM classifiers to
identify the weightlifting phases. The classification using images and the MidiaPipe
features were then evaluated and compared. Table 4.1 showed that the classification
using MidiaPipe features and SVM outperformed that using ANN. In addition, it
provided higher accuracy than the classification from images using CNN, MobileNet
and ResNet50.

Table 4.1 Weightlifting phase classification accuracy

Classifier Agcur_acy Accuracy using posture
using images landmarks and barbell features
ANN - 89.86%
SVM 91.96%
CNN 88.13% -
MobileNet 88.58% -
ResNet50 78.14% -
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Table 4.1 shows the accuracy of various classifiers in detecting weightlifting
phases. When classifying weightlifting phases from images, MobileNet obtained an
accuracy of 88.58%. CNN achieved 88.13%, and ResNet50 achieved 78.14%.

With the posture landmarks and barbell features extracted by MediaPipe, the
SVM classification achieved 91.96% accuracy, which was higher than the ANN
classifier's accuracy. The results suggested that utilising MediaPipe features in
conjunction with SVM vyielded higher accuracy compared to the other approaches

examined.

Based on the findings, the subsequent part of the study focused on using phase
classification results from MidiaPipe features and SVM to determine success in snatch
weightlifting. Nonetheless, some errors in the phase classification were corrected after
the phase classification. Therefore, we applied the procedure to correct any likely

incorrect phases and presented the findings in the following section.

4.2 Weightlifting Phase Correction

The phase correction, as explained in section 3.5, is based on five neighboring
classified phases. Figures 4.1-4.2 provided examples of weightlifting phases both before
and after the correction. The correction of the weightlifting phases of an unsuccessful

and successful weightlifting, respectively, was illustrated in Figures 4.1 and 4.2.
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Figure 4.1 Phases derived from a successful weightlifting, both prior to and

following fixing
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Figure 4.2 Phases derived from an unsuccessful weightlifting, both prior to and

following fixing
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4.3 Calculating Distances Between Hands and a Barbell

This section illustrated the distances between the hands and the barbell in both
successful and unsuccessful weightlifting video sequences. Two curves represented the
distances between left and right hands to a barbell, with the values expressed relative to
the length of the barbell.

Figure 4.3 shows the distances between hands and a barbell for a video
sequence considered successful, whereas Figure 4.4 illustrates the same measurement
for a video sequence considered failed. Unsuccessful attempts led to substantial
variations in the distance between hands and a barbell, occasionally surpassing 0.8. In
contrast, the fluctuation in distance during successful attempts consistently stayed below
0.2 (In the real program, the threshold was fixed at 0.3 to avoid some fluctuation),

indicating a more consistent grip on the barbell throughout the whole lifting operation.

These findings emphasized the significance of monitoring the distances
between hands and a barbell as a potential indicator of barbell slippage during
weightlifting. The graphs visually depicted the fluctuation in hand-barbell distances and
aided in identifying ballbell slipping situations. The results demonstrated significant
disparities in the fluctuation of hand-barbell distance between successful and
unsuccessful weightlifting attempts, highlighting the crucial role of grip stability in the

lifting procedure.

These findings were significant for determining success or failure in

weightlifting sequences.
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Figure 4.3 The fluctuation in the distances between hands and a barbell of a

successful video
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4.4 Determination of Success or Failure in Weightlifting Sequences

This section presented the results of detecting the success or failure of
weightlifting from videos. The analysis used video image recordings, estimated phase
sequences from the video sequences, and the distance between the hands and the barbell.
Tables 4.2 to 4.7 demonstrate how six different testing methods perform in detecting
errors and incidents in five types of weightlifting attempts. Six video-based approaches

for assessing snatch weightlifting success are shown in Table 4.2.

Table 4.2 Six approaches used to determine the success of snatch weightlifting

Method Name | Description

M_SixHold Judge based on the holding period of the sixth phase (subsection
3.5.9.1)

M_AlIPhases | Judge based on the presence of all six phases in a phase sequence
(subsection 3.5.9.2)

M_OrderPh Judge from six phases in order (subsection 3.5.9.3)

M_AIIPhSlip | Judge based on the ordered six phases, presence of all six phases
and barbell slipping
(subsection 3.5.9.4)

M_OrderHold | Judge based on the ordered six phases, presence of all phases and
the holding time for the sixth phase (subsection 3.5.9.5)

M_OrderSlip | Judge based on the ordered six phases, the holding time for the
sixth phase and the barbell slipping (subsection 3.5.9.6)

The results of six different testing methods are displayed in Table 4.3 for five

different categories (examples) of videos. The word "Unidentified" indicated that

weightlifting failure could not be detected, whereas the word "Identified" indicated that

it could.

Table 4.3 Results from six different testing methods on five different examples

xample
Method Example 1 Example 2 Example 3 Example 4 Example 5
M_SixHold Identified Identified Identified Identified Unidentified
M_AllPhases | Identified Unidentified | Unidentified | Unidentified Unidentified
M_OrderPh Identified Identified Unidentified | Unidentified Unidentified
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Table 4.3 Results from six different testing methods on five different examples (cont.)

xample
Method Example 1 Example 2 Example 3 Example 4 Example 5
M_AlIIPhSlip Identified Identified Unidentified | Unidentified Identified
M_OrderHold | Identified Identified Identified Identified Unidentified
M_OrderSlip Identified Identified Identified Identified Identified

4.4.1 Example 1: Initial Phases Barbell Slip Video

The video in this section shows an athlete performing the weightlifting
sequence successfully through the first phases through the fifth phase, but failing to
complete the sixth phase, which causes the barbell to drop. This part elucidated the
process of recognizing an incomplete phase sequence during an unsuccessful effort. The
figures 4.7, 4.8 and 4.9 depicted the outcome of an unsuccessful snatch weightlifting
endeavour. The athlete in Figure 4.5 completes the fifth phase, but an injury causes them
to give up on the lift and lose control of the barbell. Figure 4.6 depicts the phase
sequence in which the athlete returns to the first and second phases' movements. The
phase changes were shown in Figure 4.7, where the movements are shown in a

continuous sequence with variation throughout the lift attempt.

According to the analysis, the athlete successfully finished the fifth phase in
the 83" frame but stopped the lift prematurely owing to injury or other factors. In the
93" frame, there is an evidence of an abortion. The frame was identified as the fourth
phase. Then, in the 118" frame, the athlete performed the action that the second phase
was recognized. Simultaneously, based on the distances between hands and a barbell,
Figure 4.8 indicated that starting with the 118" frame, the barbell was no longer within
the athlete's grasp. A significant increase in distances between hands and a barbell
indicated the athlete's loss of control and grip on the barbell. The action was identified
as the lift's first phase in the 145™ frame because the bar was still uncontrollably lifting.
The lift attempt failed because the sixth phase's holding period was less than a

predetermined threshold since there were no sixth phase frames.
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Figure 4.5 Unsuccessful weightlifting screenshots
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Figure 4.6 Results of unsuccessful weightlifting's classified phases (After the

Phase Correction)
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Figure 4.7 Classified phases of unsuccessful weightlifting
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Figure 4.8 The fluctuation in the distances between hands and a barbell

This example underwent several checks based on phase sequences and barbell
handling. 1) The "Judge based on the holding period of the sixth phase" check was not
passed, successfully identifying the abort caused by injury or unexpected events in
weightlifting. The athlete did not sustain the lifting posture during the sixth phase for
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more than 1 second. 2) The "Judge based on the presence of all six phases in a phase
sequence” check was not passed. The system identified the abort caused by injury or
unexpected events in weightlifting. The athlete did not finish all six phases of
weightlifting. 3) The "Judge from six phases in order" check was not passed. The system
identified the abort caused by injury or unexpected events in weightlifting. The athlete
did not complete all six phases that followed correct order. 4) The "Judge based on the
ordered six phases, presence of all six phases and barbell slipping™ check was not passed.
The sixth phase was not found. 5) The "Judge based on the ordered six phases, presence
of all phases and the holding time for the sixth phase" check was not passed. No the
sixth-phase found. The athlete did not finish all six phases of weightlifting in correct
order. 6) The "Judge based on the ordered six phases, the holding time for the sixth
phase and the barbell slipping” check was not passed. The system identified the issue
caused by injury or unexpected events in weightlifting. The athlete did not sustain
holding the barbell during the sixth phase of weightlifting for more than 1 second, or

did not finish all six phases of weightlifting in correct order.

Therefore, the weightlifting failure video underwent testing utilizing six
distinct methods, all of which accurately classified the first example as a weightlifting

failure video.

4.4.2 Example 2: Later Phases Barbell Slip Video

The video in this section showed an athlete trying to complete the sixth phase
of snatch weightlifting, but it was unsuccessful. In this example, all phases were
presented. However, there was an abrupt halt or termination of the motions abruptly
halted or terminated. Figures 4.11 and 4.12 display the outcomes of an unsuccessful
snatch weightlifting attempt. Figure 4.9 shows a snapshot of the hand slip action during
a failed snatch lift. Figure 4.10 shows the phase sequence, highlighting that all phases
are present but in a disordered order. This was because the athlete’s movements lacked
a smooth progression through the phases, particularly with no consistent trend towards

the sixth phase. Figure 4.11 presents a curve graph illustrating the phase changes during
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the failed lift. The barbell distance changes in Figure 4.12 showed that the hands release
the barbell in the latter half of the video, indicating a loss of control.

To elaborate, according to the analysis, these figures demonstrated that the
athlete maintained the appropriate postures and phases from the 1%t phase at the 27"
frame to the 4™ phase at the 69" frame. Between the 70" and 74" frames, anomalous
motions were seen, specifically during the fourth and sixth phases, when the barbell had
already slipped out of the athlete's grasp (Figure 4.12). During the 100" frame, the
athlete lost balance and experienced more unconventional movements, finally leading

to the failure of the lift attempt.

¢) In the 74" frame of a weightlift ~ d) In the 100" frame of a weightlift
Figure 4.9 Unsuccessful weightlifting screenshots
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Figure 4.10 Results of unsuccessful weightlifting's classified phases (After the

phase correction)
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Figure 4.11 Classified phases of unsuccessful weightlifting
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Figure 4.12 The fluctuation in the distances between hands and a barbell

This sample was subjected to multiple checks based on phase sequences and
barbell handling. 1) The "Judge based on the holding period of the sixth phase™" check
was not passed. The system identified the abort caused by injury or unexpected events
in weightlifting. The athlete did not sustain the lifting posture during the sixth phase for
more than 1 second. 2) The "Judge based on the presence of all six phases in a phase
sequence" check was passed, failing to identify the abort caused by injury or unexpected
events in weightlifting. In fact, the athlete had finished all six phases of weightlifting.
3) The "Judge from six phases in order" check was not passed. The system identified
the abort caused by injury or unexpected events in weightlifting. The athlete did not
complete all six phases that followed correct order. 4) The "Judge based on the ordered
six phases, presence of all six phases and barbell slipping™” check was not passed. The
system identified the issue caused by injury or unexpected events in weightlifting. The
athlete did not hold the barbell in last two frames of sixth phase of weightlifting. 5) The
"Judge based on the ordered six phases, presence of all phases and the holding time for
the sixth phase” check was not passed. The system identified the abort caused by injury
or unexpected events in weightlifting. The athlete did not sustain the lifting posture
during the sixth phase for more than 1 second, or did not finish all six phases of

weightlifting in correct order. 6) The "Judge based on the ordered six phases, the holding



75

time for the sixth phase and the barbell slipping™ check was not passed. The system
identified the issue caused by injury or unexpected events in weightlifting. The athlete
did not sustain holding the barbell during the sixth phase of weightlifting for more than
1 second, or did not finish all six phases of weightlifting in correct order.

Therefore, the weightlifting failure video underwent testing utilizing six
distinct methods. Except for method M_AIlIPhases, all other methods correctly
identified the second example as a weightlifting failure video.

4.4.3 Example 3: 6™ Phase Barbell Slip Video

The athlete in this section's video successfully completed all the necessary
movements, but either an injury interrupted the final action of the sixth phase or it
abruptly ended before the time deemed a successful lift. The barbell was also dropped.
Figures 4.15 and 4.16 depict the outcomes of an unsuccessful snatch weightlifting
endeavor. Figure 4.13 shows the athlete dropping the barbell while completing the sixth
phase. Figure 4.14 displays the phase sequence, showing all six phases. However, the
duration of the sixth phase was too short, followed by the barbell release. Figure 4.15
details continuous movement phase changes during the lift attempt. Significant distance
changes in the latter part of Figure 4.16 indicated that the barbell was released.

Based on the analysis, the athlete successfully finished the first, second, and
sixth phases in the 23", 61, and 117" frames, respectively. The athlete successfully
executed a lift of the barbell. According to Figure 4.16, the athlete experienced distance
changes over the threshold after the 117" frame, indicating a loss of grip due to a
malfunction. At the 143" frame, the athlete relinquished control of the barbell and
ceased the lifting attempt. The athlete was unable to sustain the sixth phase for the

necessary duration, leading to a failure in the lift.
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Figure 4.13 Unsuccessful weightlifting screenshots
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Figure 4.14 Results of unsuccessful weightlifting's classified phases (After the phase

correction)
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Figure 4.15 Classified phases of unsuccessful weightlifting
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Figure 4.16 The fluctuation in the distances between hands and a barbell

This sample was subjected to multiple checks based on phase sequences and
barbell handling. 1) The "Judge based on the holding period of the sixth phase™" check
was not passed. The system identified the abort caused by injury or unexpected events
in weightlifting. The athlete did not sustain the lifting posture during the sixth phase for
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more than 1 second. 2) The "Judge based on the presence of all six phases in a phase
sequence" check was passed. The athlete had finished all six phases of weightlifting. 3)
The "Judge from six phases in order" check was passed. The athlete had completed all
six phases that followed correct order. 4) The "Judge based on the ordered six phases,
presence of all six phases and barbell slipping” check was passed. After checking the
distances between hands and a barbell from the first frame to the last maximum phase
position or frame, the distances was lower than a threshold. 5) The "Judge based on the
ordered six phases, presence of all phases and the holding time for the sixth phase" check
was not passed. The system identified the abort caused by injury or unexpected events
in weightlifting. The athlete did not sustain the lifting posture during the sixth phase for
more than 1 second, or did not finish all six phases of weightlifting in correct order. 6)
The "Judge based on the ordered six phases, the holding time for the sixth phase and the
barbell slipping™ check was not passed. The system identified the issue caused by injury
or unexpected events in weightlifting. The athlete did not sustain holding the barbell
during the sixth phase of weightlifting for more than 1 second, or did not finish all six
phases of weightlifting in correct order.

Therefore, the weightlifting failure video underwent testing utilizing six
distinct methods. Four methods correctly identified the third example as a weightlifting
failure video; however, methods M_AllIPhases and M_OrderPh did not identify the

errors.

4.4.4 Example 4: No-Slip 6th Phase Fall Video

The video in this section showed an athlete who successfully completed all the
preceding phases but was unable to maintain the sixth phase for the necessary duration.
Despite completing all motions, the athlete disrupted his hold on the barbell during the
sixth phase, making it challenging to determine if the barbell has released. Figures 4.19
and 4.20 depict the outcomes of an unsuccessful snatch weightlifting endeavor. Figure
4.17 shows the athlete fails to sustain the sixth phase, resulting in a fall, with the barbell
remaining close to the hands. Figure 4.18 displays the phase sequence and shows all six

phases completed, but the sixth phase did not hold for enough time, and the fall was
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categorized as an unrecognized phase. Figure 4.19 depicts the phase change sequence
and illustrates continuous changes, detailing the actions taken during the lift attempt.
Figure 4.20 shows the barbell distance change sequence, which shows significant
fluctuations without loss of grip and with a shorter sixth phase duration than required.

According to the analysis, the athlete successfully completed the first, second,
and sixth phases in the 12" frame, 28" frame, and 80" frame, respectively, and
effectively lifted the barbell. The barbell was held by the athlete until the 82" frame, as
depicted in Figure 4.20. Upon reaching the 82" frame, the athlete experienced a
predicament that led to variations in distances; however, they remained within the
acceptable limit, indicating the absence of any loss of grip. During the 109" frame, the
athlete experiences a fall but manages to maintain their grip on the bar. The athlete failed
to meet the necessary sixth-phase time requirement, leading to a failure to complete the
lift.

a) In the 12" frame of a weightlift b) In the 28" frame of a weightlift

Rk g e ¢ FSTO) e K e

S A 4

¢) In the 82" frame of a weightlift  d) In the 109" frame of a weightlift

Figure 4.17 Unsuccessful weightlifting screenshots



80

ojlo|o|lo|lo|o|o|lo|o|Oo|Oo|O|O|O|O]O
ojlojoflofojo|o|1 |22 |2|a]2]|2|1]1
2022222 |3|3|3|3|3|3|3|3|3]3
414 ala|a|a|alala|ala|a|alala]as
41 4|4|4|5|5|5|5|5|5|5|5[5|5]|5]|5
5/5|5|5[5|5|5|5|5|5|5[5|5|5|5]5
5 (55|54 |[4[3[|3]|3|2|2|1|1]0]0

Figure 4.18 Results of unsuccessful weightlifting's classified phases (After the phase

Classified Phase

Phase Sequence

correction)

1 4 7 1013 16 1922 2528 313437 40 4346 4952 55 58 61 64 67 70 73 76 79 82 85

Figure 4.19 Classified phases of unsuccessful weightlifting

Image Frame No.
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Figure 4.20 The fluctuation in the distances between hands and a barbell

This sample underwent several checks based on phase sequences and barbell
handling: 1) The "Judge based on the holding period of the sixth phase" check was not
passed. The system identified the abort caused by injury or unexpected events in
weightlifting. The athlete did not sustain the lifting posture during the sixth phase for
more than 1 second. 2) The "Judge based on the presence of all six phases in a phase
sequence” check was passed. The athlete had finished all six phases of weightlifting. 3)
The "Judge from six phases in order" check was passed. The athlete had completed all
six phases that followed correct order. 4) The "Judge based on the ordered six phases,
presence of all six phases and barbell slipping” check was passed, failing identify the
issue caused by injury or unexpected events in weightlifting. In fact, the athlete had held
the barbell during all phases of weightlifting (the distance threshold was fixed at 0.3).
5) The "Judge based on the ordered six phases, presence of all phases and the holding
time for the sixth phase™ check was not passed. The system identified the abort caused
by injury or unexpected events in weightlifting. The athlete did not sustain the lifting
posture during the sixth phase for more than 1 second. 6) The "Judge based on the

ordered six phases, the holding time for the sixth phase and the barbell slipping" check
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was not passed. The system identified the issue caused by injury or unexpected events
in weightlifting. The athlete did not sustain holding the barbell during the sixth phase of
weightlifting for more than 1 second.

Therefore, the weightlifting failure video underwent testing utilizing six
distinct methods. 3 methods correctly identified the fourth example as a weightlifting
failure video, however methods M_AlIPhases, M_OrderPh, and M_AIlIPhSlip did not
identify errors

4.4.5 Example 5: Unchanged Posture After Barbell Slip

The video in this section shows an athlete seems to execute all the motions
successfully. Nevertheless, as a result of an unforeseen occurrence, the athlete hurls the
barbell aside. As the athlete is uninjured, he remains motionless for a brief period and
raises his hands before accepting the error. Several frames that occur when the barbell
is mistakenly thrown were identified as the sixth phase. The figures 4.23 and 4.24 depict
the outcomes of an unsuccessful snatch attempt. In Figure 4.21, observe the athlete
failing during the sixth phase, although the athlete completed all phases. Figure 4.22
shows the phase sequence chart. The athlete looked like completes all six phases with
sufficient duration for the sixth phase. Figure 4.23 illustrates continuous changes in
movement phases, providing a detailed visualization of the athlete’s actions during the
lift attempt. Figure 4.24 depicts the barbell distance change sequence. The latter part of
the sequence shows significant fluctuations, indicating that the barbell was effectively
released.

According to the analysis, the athlete finishes the first phase at the 10" frame,
the fifth phase at the 54™ frame, and the sixth phase at the 72" frame. Efficiently
executes a barbell lift during the sixth phase in the 89" frame, but then loses control and
throws the barbell. According to Figure 4.24, the distance between the hand and the
barbell surpasses the threshold after the 85" frame, suggesting a loss of grip. The

alteration in distance resulted in the lift malfunctioning.



a) In the 10" frame of a weightlift ~ b) In the 54" frame of a weightlift

¢) In the 72" frame of a weightlift ~ d) In the 89" frame of a weightlift

Figure 4.21 Unsuccessful weightlifting screenshots
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Figure 4.22 The results of unsuccessful weightlifting’s classified Phases (After the

phase correction)
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Phase Sequence

Classified Phase

1

P

1 4 71013161922252831343740434649525558616467707376798285889194

Image Frame No.

Figure 4.23 Classified phases of unsuccessful weightlifting

Barbell Distance Change
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= | eft Barbell Distance == Right Barbell Distance
Figure 4.24 The fluctuation in the distances between hands and a barbell
This sample underwent several checks based on phase sequences and barbell

handling: 1) The "Judge based on the holding period of the sixth phase” check was
passed, failing to identify the abort caused by injury or unexpected events in
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weightlifting. In fact the athlete had sustained the lifting posture during the sixth phase
for more than 1 second. 2) The "Judge based on the presence of all six phases in a phase
sequence™ check was passed. The athlete had finished all six phases of weightlifting. 3)
The "Judge from six phases in order" check was passed. The athlete had completed all
six phases that followed correct order. 4) The "Judge based on the ordered six phases,
presence of all six phases and barbell slipping” check was not passed. The system
identified the issue caused by injury or unexpected events in weightlifting. The athlete
did not hold the barbell in last frames of sixth phase of weightlifting. 5) The "Judge
based on the ordered six phases, presence of all phases and the holding time for the sixth
phase" check was passed, failing to identify the abort caused by injury or unexpected
events in weightlifting. In fact the athlete had sustained the lifting posture during the
sixth phase for more than 1 second. 6) The "Judge based on the ordered six phases, the
holding time for the sixth phase and the barbell slipping™ check was not passed. The
system identified the issue caused by injury or unexpected events in weightlifting.
During the sixth phase of weightlifting, the athlete did not sustain holding the barbell
for more than 1 second, and the distances between hands and a barbell were beyond the

allowance.

Therefore, the weightlifting failure video underwent testing utilizing six
distinct methods. 2 methods correctly identified the fifth example as a weightlifting
failure video, however methods M_SixHold, M_AllPhases, M_OrderPh, and
M_OrderHold did not identify errors

4.5 Determination of Snatch Weightlifting Success

This section provided the detection results of 20 video samples, including of
10 successful weightlifting attempts and 10 failure weightlifting attempts. The efficacy
of each approach was assessed by its capacity to precisely distinguish between

successful and unsuccessful snatch weightlifting attempts.
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4.5.1 Accuracy of M_SixHold Method

The method described in Section 3.5.9.1, titled "Judging based on the holding
period of the sixth phase” was applied in this experiment. The ability to determine
success or failure in weightlifting was 90% accurate. As shown in Table 4.4, the system
incorrectly identified 10% of unsuccessful lifts as successful lifts. Example 5°s video

provided the reason for the misidentification.

Table 4.4 Accuracy of the "Judge based on the holding period of the sixth phases”

method
Prediction Result b | .
Successful Lifting Unsuccessful Lifting
Actual Result
Successful Lifting 100% 0%
Unsuccessful Lifting 10% 90%

4.5.2 Accuracy of M_AlIPhases Method

The method described in Section 3.5.9.2, titled "Judging based on the presence
of all six phases in a phase sequence™ was applied in this experiment. The accuracy of
determining success or failure in weightlifting was 40%. As shown in Table 4.5, the
system incorrectly identified 60% of unsuccessful lifts as successful lifts, indicating that
the determination based on the presence of all six phases in a weightlifting sequence
was not enough and resulted in a substantial decline in the ability to identify
unsuccessful lifts. The reasons for the misidentification were explained in Examples 2—
5.

Table 4.5 Accuracy of the "Judge based on the presence of all six phases in a phase

sequence" method

Prediction Result
Actual Result
Successful Lifting 100% 0%

Successful Lifting Unsuccessful Lifting

Unsuccessful Lifting 60% 40%
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4.5.3 Accuracy of M_OrderPh Method

The method described in Section 3.5.9.3, titled "Judge from six phases in order"
was applied in this experiment. The accuracy of determining success or failure in
weightlifting was 70%. As shown in Table 4.6, the system incorrectly identified 30% of
unsuccessful lifts as successful lifts, indicating that the determination based on the six
phases in order found in a weightlifting sequence was not enough. The reasons for the
misidentification were explained in Examples 3-4.

Table 4.6 Accuracy of the "Judge from six phases in order" method

Prediction Result R | .
Successful Lifting Unsuccessful Lifting
Actual Result
Successful Lifting 100% 0%
Unsuccessful Lifting 30% 70%

4.5.4 Accuracy of M_AlIPhSlip Method

The method described in Section 3.5.9.4, titled "Judging based on the presence
of all six phases and barbell slipping" was applied in this experiment. The ability to
determine success or failure in weightlifting was 80% accurate. As shown in Table 4.7,
the system incorrectly identified 20% of unsuccessful lifts as successful lifts. The

reasons for the misidentification were explained in Example 3.
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Table 4.7 Accuracy of the "Judge based on the ordered six phases, presence of all six

phases and barbell slipping™ method

Prediction Result o o
Successful Lifting Unsuccessful Lifting
Actual Result
Successful Lifting 100% 0%
Unsuccessful Lifting 20% 80%

4.5.5 Accuracy of M_OrderHold Method

The method described in Section 3.5.9.5, titled "Judging based on the ordered
six phases, presence of all phases, and the holding time for the sixth phase” was applied
in this experiment. The ability to determine success or failure in weightlifting was 90%
accurate. As shown in Table 4.7, the system incorrectly identified 10% of unsuccessful
lifts as successful lifts. The reasons for the misidentification were explained in Example
5.

Table 4.8 Accuracy of the "Judge based on the ordered six phases, presence of all phases

and the holding time for the sixth phase" method

Prediction Result N o
Successful Lifting Unsuccessful Lifting
Actual Result
Successful Lifting 100% 0%
Unsuccessful Lifting 10% 90%

4.5.6 Accuracy of M_OrderSlip Method

The method described in Section 3.5.9.5, titled "Judging based on the
sequential six phases, the duration of the sixth phase, and the occurrence of barbell
slipping" was applied in this experiment. The ability to determine success or failure in
weightlifting was 100% accurate, suggesting the highest level of precision in identifying
unsuccessful lifts compared to other approaches.
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Table 4.9 Accuracy of the "Judge based on the ordered six phases, the holding time for
the sixth phase and the barbell slipping™ method

Prediction Result . .
Successful Lifting Unsuccessful Lifting
Actual Result
Successful Lifting 100% 0%
Unsuccessful Lifting 0% 100%

To sum up, Figures 4.25 and 4.26 revealed the accuracy of each method for

judging successful and unsuccessful lifting videos.

Accuracy of methods to judge the successful weightlifting videos

100
9
8
7
6
5

0 1

3
M_SixHold M_AllIPhases =~ M_OrderPh M_AlIPhSlip~M_OrderHold M_OrderSlip

Percent
0O 0O 0 0O o0 o o

2
1

o o

Figure 4.25 Accuracy of successful videos

Accuracy of methods to judge the unsuccessful weightlifting videos
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Figure 4.26 Accuracy of unsuccessful videos
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Table 4.10 presents six distinct methodologies employed to assess the
effectiveness of snatch weightlifting endeavors. The evaluation of these strategies was
based on their capacity to effectively differentiate between successful and unsuccessful
attempts. The method M_OrderSlip exhibited exceptional precision, attaining a flawless
detection rate of 100%. The M_SixHold and M_OrderHold methods demonstrated
impressive performance, each with an accuracy of 95%. The M_OrderPh method
demonstrated a respectable accuracy of 85%, while the M_AllIPhases method exhibited
the lowest accuracy of 70%.

Table 4.10 Accuracy of algorithms to determine snatch weightlifting success

No. Algorithms Accuracy
1 M_SixHold 95%

2 M_AllPhases 70%

3 M _OrderPh 85%

4 M_AlIPhSlip 90%

5 M _OrderHold 95%

6 M OrderSlip 100%

Table 4.10 shows that the M_OrderSlip algorithm achieved a 100% accuracy
rate, while M_AlIPhases only achieved a 70% accuracy rate. This discrepancy can be
attributed to the nature of the test samples and the methods used by each algorithm. In
the test samples, the majority of failed snatch weightlifting attempts still completed all
six phases of the lift. This means that the M_AlIPhases method, which evaluates the
presence of all six phases in sequence, struggled to differentiate between successful and
failed attempts accurately. The presence of all phases does not necessarily indicate a

successful lift, leading to a lower accuracy rate for M_AllPhases.



Chapter 5

Conclusion and Recommendations

5.1 Conclusion

This study encompassed a thorough research procedure aimed at identifying
the success or failure of weightlifting in videos. The research method includes feature
extraction, image classification, video sequence analysis, and the assessment of

weightlifting success or failure.

Through a comparative study of image classification techniques and the
application of various logical approaches to the analysis of video sequences, we have
achieved the following significant results: 1) Initially, we conducted a thorough
comparison of various image classification algorithms to choose the most appropriate
one for weightlifting image classification. This step served as a solid foundation for our
later study. 2) By employing logical reasoning, we were able to correct several errors in
identifying the weightlifting phases. 3) Furthermore, we examined the utilization of
several logical methods in the analysis of weightlifting videos. Through the integration
of image classification, phase correction, video sequence analysis, the proposed method

could effectively determine the success in weightlifting attempts.

This study provided a comprehensive method for the process of determining
weightlifting videos, which produced remarkable results through analysis and
experiments. The implications of our research are important for improving the accuracy

of referees in weightlifting competitions.
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5.2 Recommendations

Extend the scope of the research to encompass a wider variety of scenes and
lifting scenarios. Examine whether it is possible to obtain a more complete view of

weightlifting movements by using multi-angle video recognition.

The implementation of sequence analysis and prediction algorithms should be
strengthened in order to obtain a deeper comprehension of weightlifting performances.
Provide algorithms able to predict movement patterns and identify patterns indicating

successful or unsuccessful lifts.

5.2.1 Limitations

Although our research has made notable progress in weightlifting analysis, it
is important to highlight several limitations: 1) The use of truncated video in the analysis
may disregard environmental influences. Future research should take into account the
influence of environmental factors on judging weightlifting success. 2) The lack of
sound recognition analysis impedes our understanding of the auditory cues present
during weightlifting performances. Subsequent investigations should look into the use

of sound recognition algorithms to get further contextual information.

5.2.2 Future Outlook

Examining the feasibility of implementing recognition systems on multiple

platforms, including computers and smartphones running distinct operating systems.

Conduct an in-depth analysis of the environmental aspects, such as crowd noise,
lighting conditions, and competition atmosphere, to determine their influence on
weightlifting performances. Incorporate environmental data into analysis frameworks

to enhance the comprehension of performance dynamics.
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By prioritizing these specific areas, future studies can potentially enhance the
method to determine the success or failure of both snatch and clean and jerk
weightlifting. Furthermore, expanding the understanding of weightlifting biomechanics
can lead to more efficient training methods and strategies for improving performance.
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