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This study explored the application of machine learning models for classifying
banana ripeness and predicting internal fruit qualities such as Brix (sweetness) and pH.
Recognizing the inefficiency and subjectivity of traditional fruit quality assessment
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classification and prediction techniques. The study comprised two main parts. In the
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regression, support vector regression (SVR), and k-nearest neighbors (KNN). Softmax
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Chapter 1

Introduction

1.1 Background and Significance of the Problem

People have higher expectations for fruit quality as their living levels and
quality of life have improved. Foreign trade is also impacted by quality, so it is critical
to improve fruit quality testing and grading. Fruit quality plays a critical role in
influencing international trade, especially as consumer expectations rise for high-
quality, well-graded produce. Emphasis on improving testing and classification
standards for fruit quality is becoming increasingly crucial in the agricultural sector
(Moreno et al., 2021). One of the most commonly consumed fruits worldwide is the
banana. After harvest, there is a respiratory peak of ripening, causing the fruits to
become soft or even rot. This means that bananas have a very short shelf life. Customers
who buy bananas in the market usually pay attention to the color of the peel first, as the
color of bananas usually reflects the ripeness of the bananas (Saputro, Juansyah, &
Handayani, 2018). Some people have particular preferences for the ripeness of their
bananas. Due to their higher starch content compared to ripe bananas, unripe bananas
contain less sugar. Ripe bananas taste better because they are sweeter, but studies of
overripe bananas have shown that consumers are less likely to buy them because of their

inferior quality, brown spots, and lower hardness (Symmank, Zahn, & Rohm, 2018).

Banana ripeness classification is crucial in agriculture as it determines the
quality of bananas. The traditional use of a sensory assessment of fruit ripeness is costly,
time-consuming, and skill-dependent. At present, the identification methods for fruit
ripeness mainly rely on traditional manual discrimination and physicochemical analysis.
The manual grading method wastes a lot of manpower and resources, and because
people's senses differ, it can be challenging to test and grade fruits accurately. The

subjectivity of grading is relatively strong, and prolonged observation can lead to eye



fatigue. In addition to being inefficient, this method cannot guarantee the quality of
grading (Sarkar, Das, Prakash, Mishra, & Singh, 2022). Therefore, non-destructive
approaches such as image analysis are required for the recognition of various vegetables,
fruits, and other agricultural products. Agricultural tasks such as fruit recognition, fruit
freshness determination, and fruit defect detection employ computer vision and machine

learning (Castro et al., 2019).

The advancement of computer vision and machine learning technology can be
used to automatically classify fruit ripeness. Deep learning technology has evolved
within machine learning, and one of the deep learning approaches that plays a crucial
role is the convolutional neural network (CNN) (Saragih & Emanuel, 2021). CNNs were
used to classify the ripeness level of a banana bunch and achieved an accuracy of
91.21% (Phoophuangpairoj, Ngoenrungrueang, & Audomsin, 2023). MobileNet is a
variant of the CNN architecture designed to reduce the number of modeled parameters
and computational complexity while maintaining good performance. Although
MobileNet is lightweight, it can still provide good performance in tasks such as image
classification and object detection. This makes it an ideal choice for image processing
in environments with limited computing resources. MobileNet reduces the operation of
standard convolution used in the standard convolutional neural network to a depth-wise
separable convolution, which consists of depth-wise convolution and point-wise
convolution (Howard et al., 2017). ResNet50 is a 50-layer convolutional neural
organization. The residual network avoids the gradient disappearance and explosion
issues that the conventional CNN model had by utilizing the skip connection concept,
which adds the original input to the convolutional layer's output (Sharma & Singh,
2021).

The use of image processing technology has achieved high accuracy in the
classification and detection of fruits. This study used professional equipment to collect
the pH value, sweetness, hardness, and color changes, as well as images of seven stages
of bananas. This study aims to find an efficient method for classifying the ripeness of
bananas. Researchers looked into how to categorize fruit maturity using machine

learning techniques. While the skin of a number of banana varieties can be used to



evaluate their maturity, research needs to be done to forecast the characteristics within.
This study will use various machine learning models for the classification of banana

maturity, prediction of Brix (sweetness), and pH value.

1.2 Research Objectives

1.2.1 Construct Machine Learning Models that Categorize Banana

Ripeness Based on Images

Develop an effective machine learning model capable of precisely classifying
banana ripeness. This objective necessitates the acquisition of an adequate quantity and
variety of banana image datasets, data preprocessing, the selection of suitable machine
learning architectures, and the utilization of precision, recall, F1-score, macro average,

and weighted average as metrics for assessing the performance of classification models.

1.2.2 Finding the Relationship Between pH and Brix and the Ripening

Properties of Bananas

The association between banana qualities and pH, sweetness, and fundamental
exterior factors will be investigated through statistical approaches and machine learning.

1.2.3 Create a Brix, pH, and Ripeness Prediction Model

Create predictive models that can determine a banana's pH and sweetness and

its maturity based on machine learning approaches.

1.3 Scope of the Study

1.3.1 This study applied various machine learning models to classify banana
maturity, and this study focused on the Musa acuminata bananas.



1.3.2 This study applied various methods to predict Brix and pH values. The
research focused on how to accurately classify the maturity of bananas and predict their
Brix and pH levels from banana images and from the RGB and L*a*b* color values

measured from a point on a banana.
1.4 Research Framework

This research framework focuses on classifying banana ripeness and predicting
internal fruit qualities: Brix (sweetness) and pH values, using machine learning
approaches. It consists of three main parts: 1) classifying banana ripeness from images,
2) predicting banana Brix and pH values using softmax features, and 3) predicting

banana Brix and pH values using RGB and L*a*b* color values.

Figure 1.1 illustrated that the first part involved the classification of banana
ripeness utilizing machine learning classifiers, including MobileNet, ResNet50, CNN,
and VGG16. In the second part, the MobileNet is further used to extract features (seven
softmax values) from the images, which are then used as inputs for linear regression,
SVR, and KNN to predict Brix and pH values. In the third part, RGB and L*a*b* color
data were obtained from bananas. Linear regression, SVR, and KNN utilized RGB
values, L*a*b* values, and a mix of both to predict Brix and pH values.

Banana images Banana samples

l y
Collect RGB and L*a*h*
color values,

Y
Usz MobileNet to extra
features (seven softmax

Use MobileNet, ResNet50, CNN
and VGG 16 ro classify banana

ripensss. i)
A Y
Use linear regression, SVR. and| | Use linear regression. SVR, and || Use linear regression. SVR. and
Banana ripeness classes — - KNN to predict Brix and pH | [KNN to predict Brix and pH values ENN i0 grmdice By Ld PHH\ "JU:'
Use lincar regression, values from RGB color values. from L*a*b* color values from & mix of RGB and L"a*b
SVR, and KNN to predict color values.

Brix and pH values

l

Brix and pH values Brix and pH values

Figure 1.1 Research Framework



Chapter 2

Literature Review

2.1 Banana Ripeness

Banana ripeness refers to the physiological and biochemical changes that occur
in the fruit during ripening. The ripening stage of bananas is usually classified into seven
stages based on the peel color, firmness, and flavor of the fruit (Zhang, Lian, Fan, &
Zheng, 2018), as shown in Table 2.1. The first stage of banana ripening is the full green
stage; the fruit is not yet ripe. In the second stage, the peel of the banana begins to appear
yellow, and the green color is greater than the yellow color, indicating that the fruit is
not yet ripe. In the third stage, the fruit starts to mature as the yellow color intensifies
and surpasses the green color. In the fourth stage, the peel is predominantly yellow, with
some green areas visible at the top and bottom. The fifth stage is almost completely
yellow, with fully ripe fruit, a soft texture, and a sweet taste. The sixth stage is the
spotted stage, where the peel has brown spots, the fruit is overripe, the texture is softer,
and the flavor is stronger. The seventh stage is the appearance of a black color, with a

large amount of black, overripe, and pasty texture on the fruit peel (Zhang et al., 2018).

L]
4 l’

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Green and More green More Yellow Full yellow Yellow with Overripe
hard peels than yellow yellow than with green brown spots

green tip

Figure 2.1 Classification of ripeness stages of bananas
Source: Chen & Phoophuangpairoj, 2024



2.1.1 Banana Ripeness Physiological and Biochemical Changes

2.1.1.1 Physiological Changes

During the ripening process of bananas, several physiological changes
occur in the fruit. The most significant change is fruit softening, which is due to cell
wall degradation and loss of turgor pressure (El-Sharkawy, 2004). This results in a
decrease in firmness and an increase in sweetness as the fruit ripens. Due to the
breakdown of chlorophyll and the production of carotenoids, the color of the fruit also

changes from green to yellow (Moreno et al., 2021).

2.1.1.2 Biochemical Changes

The ripening of bananas is also characterized by several biochemical
changes. The most significant change is the production of ethylene gas, a natural plant
hormone that regulates the ripening process (El-Sharkawy, 2004). As the fruit ripens,
ethylene production increases, leading to the activation of various enzymes that break down
complex molecules into simpler molecules, such as starch into sugar (EI-Sharkawy, 2004).
This leads to an increase in the sweetness and aroma of the fruit. The total soluble solids
(TSS) content of the fruit also increases with increasing ripeness, while the titratable acidity
(TA) and pH decrease (Moreno et al., 2021). Several studies explored how physiological
and biochemical changes during the ripening of bananas affect their fruit quality and shelf
life. For example, Jones (2018) and Imsabai, Ketsa, and van Doorn (2006) explored the
mechanism of finger shedding during the ripening process of banana fruits, particularly the
differences between the "Hom Thong" and "Namwa" varieties. Research has found that the
shedding of fruit fingers mainly occurs at the junction of the stem and flesh, but the true
delamination area has not been detected. Therefore, the shedding phenomenon is mainly

related to the weakening of the fruit peel.



2.2 Method for Detecting Banana Ripeness

2.2.1 Traditional Methods

Traditional methods mainly rely on observing the appearance characteristics of
bananas, such as color, spots, flesh texture, and fruit shape. The operator visually
determines the maturity of bananas and categorizes them into different levels, such as
immature, mature, and overripe. These methods are influenced by the subjective
judgment and experience of the operator, so there may be inconsistencies. Different
people may produce different classification results for the same banana. Traditional
methods rely on the experience and training of operators, thus requiring time to develop
professional skills. This also limits the application of these methods in large-scale

automation environments (Sarkar et al., 2022).

2.2.2 Machine Learning for Detecting Banana Ripeness

Automated fruit ripeness classification is possible with the help of emerging
computer vision and machine learning technology. Among the many advancements in
machine learning, the CNN stands out as a key component of deep learning (Saragih &
Emanuel, 2021). Overall, traditional methods mainly rely on manual observation and
subjective judgment, while machine learning methods utilize computer vision
technology and data-driven methods to provide objective, automated, and highly
accurate banana classification. The data sources include research literature and related
academic research in the fields of agriculture and food science. This comparison
highlights the potential of machine learning methods in improving classification
efficiency and accuracy, especially in large-scale production and supply chain

management.



2.3 CNN Architecture

CNN, with its numerous variations, is one of the most widely used deep neural
network designs. These are typical deep learning models for computer vision because
of a number of features, including shift invariance, parameter sharing, and convolutional
processes. The possible CNN architecture stacks three types of layers—convolutional,
pooling, and fully connected, also known as dense layers—on top of each other (Albawi,
Mohammed, & Al-Zawi, 2017). Figure 2.1 depicted the condensed CNN architecture
for classifying dogs. Machine learning problems also make use of CNN. Deep learning
has made significant progress in picture categorization over the last ten years,

particularly in relation to CNN.

Fully Connected
Layers

Input Image Convaiution Pooling Layers
i g Layers -

o

-

Figure 2.2 A simplified CNN architecture for dog classification
Source: Phiphiphatphaisit & Surinta, 2020

Researchers developed a fruit grading control system using convolutional
neural networks. They used CNN for tasks involving the detection and identification of
fruits through parameter optimization. The test results for 971 images in 30 categories
had a classification accuracy of about 94%. This implies that control applications that
depend on visual subsystems can utilize the system and approach (Khaing, Naung, &
Htut, 2018).

There are various types of Convolutional Neural Network (CNN) architectures

in the fields of image classification, segmentation, and object detection. Most



architectures primarily focus on accuracy as a key factor in model implementation.
However, in practical applications, besides accuracy, other important factors such as
memory usage and performance are equally critical. Although each CNN architecture
has its own advantages and limitations, research comparing different architectures is not
common, especially on how to choose the appropriate architecture based on actual
application requirements and hardware capabilities (Darapaneni, Krishnamurthy, &
Paduri, 2020).

The implementation of CNNs in automation systems and image classification
jobs has received significant attention and validation in recent years. For instance,
researchers used deep learning models, such as CNN, to categorize agricultural products.
They were successful in obtaining effective distinction of several fruit types by
analyzing the form, texture, and color characteristics of the fruits (Rahman et al., 2023).
This suggested that the use of CNN models in precision agriculture could potentially

improve classification effectiveness.

2.4 MobileNet Architecture

Howard et al. (2017) introduced the depthwise separable convolution-based
MobileNet architecture, aiming to build a lightweight deep CNN that reduces
computation time and generates excessively tiny models. MobileNet utilizes depthwise
separable convolution to minimize computational complexity and parameters in
conventional convolution operations. The fundamental concept is to partition the
ordinary convolution into two phases: depthwise convolution and pointwise convolution.
Deep convolution performs convolution operations on each input channel, while point
convolution combines data from multiple channels using 1x1 convolution, which makes
computing much simpler. Every layer of the MobileNet architecture incorporates batch
normalization and the ReLU activation function, enhancing the network’s training
performance. MobileNet markedly decreases processing demands and model

dimensions, rendering it appropriate for deployment on mobile devices.
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Phiphiphatphaisit and Surinta (2020) investigated food classification with the
MobileNet architecture, which includes batch normalization, dropout layers, rectified
linear units, global average pooling layers to mitigate overfitting, and a softmax layer at
the last layer. The outcomes of the experiments indicated that the suggested iteration of
the MobileNet architecture attains significantly more accuracy compared to the first

MobileNet architecture.

Gulzar (2023) developed a fruit recognition system that used the MobileNet
architecture as its foundation. They constructed this system to classify fruits. This was
accomplished by the use of batch normalization and global average pooling layers. In
addition, the generalization capability of the model was further improved by the

combination of data augmentation and transfer learning.

The MobileNet model is widely used in computer vision tasks for mobile and
embedded devices due to its excellent balance between accuracy and speed. Howard et al.
(2017) first proposed MobileNet V1, which significantly reduced the model's parameters
and computational complexity by introducing depthwise separable convolutions. It
demonstrated high accuracy and significant speed advantages in classification tasks on

the ImageNet dataset.

2.5 ResNet50 Architecture

ResNet50 is a 50-layer convolutional neural network. This network solves the
gradient disappearance and explosion problem with the traditional CNN model by using
the skip connection idea to add the original input to the output of the convolutional layer
(Sharma & Singh, 2021). Figure 2.2 illustrated the residual network, or ResNet, as its
acronym. Deep convolutional neural networks have advanced significantly in the area
of image detection and classification throughout time. It became popular to solve more
difficult problems and increase the accuracy of categorization or recognition. Over
recent years, deep convolutional neural networks have achieved significant
advancements in image detection and classification tasks. They have become essential

for addressing complex problems and improving accuracy in various domains, such as
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object recognition and medical image analysis. The training of deeper networks remains
challenging due to problems such as vanishing gradients and overfitting, particularly as
network depth increases (Burt, Thigpen, Keil, & Principe, 2021). Residual learning
frameworks were designed to address these issues by facilitating more efficient training

of deeper networks.

F(x) identity

x + F(#) ¢
Figure 2.3 A residual block in a deep residual network

Source: Researcher

In terms of network structure improvement, scholars proposed HS ResNet
(Hierarchical Split ResNet), which improves the performance of the model by
introducing multi-level segmentation and connections in a single residual block. This
improved ResNet-50 achieved a Top-1 accuracy of 81.28% on the ImageNet-1k dataset,

demonstrating its advantages in image classification tasks (Yuan et al., 2020).

ResNet50 is often used as a backbone network for feature extraction, providing
powerful feature representation capabilities for object detection and semantic
segmentation tasks. For example, frameworks such as Mask R-CNN used ResNet50 as
the infrastructure to achieve high-precision detection and segmentation of targets on the
COCO dataset (He, Gkioxari, Dollar, & Girshick, 2017). Cell image classification based
on deep learning can prevent erroneous diagnostic decisions. This study mainly
investigated the implementation of transfer learning to improve the diagnostic accuracy
based on the classification of malaria-infected cells. The total number of infected and
uninfected cell images in the dataset was 27,558. 70%, 15%, and 15% were used for
training, testing, and validation, respectively. The model's inputs were RGB (red, green,
blue) images.
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The ResNet50 using pre-trained weights, with the final layer being a fully
connected dense layer with sigmoid activation, was applied. The proposed model consists
of two layers: a pre-trained ResNet layer and a dense layer. Reddy and Juliet (2019)
recommended against freezing some layers, such as batch normalization (BN) layers, due
to the difficulty in matching the dataset's average and variance with the pre-trained

weights.

2.6 VGG16 Architecture

A deep CNN architecture called VGG16 was proposed by Simonyan and
Zisserman (2015) in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). Its goal was to make image classification tasks more accurate. Simonyan
and Zisserman (2015) named the architecture VGG16 due to its 16 trainable layers of
weights, which included 13 convolutional layers and 3 fully connected layers. VGG16
reduced the number of parameters while ensuring feature extraction depth by stacking
multiple 3x3 convolution kernels instead of larger ones (such as 7x7 or 5x5). This design
concept effectively improved the recognition ability of the model while reducing
computational complexity. The network structure of VGG16 adopts a fixed max pooling
layer, which down samples images after each convolutional layer to gradually reduce
the size of the feature map while preserving key information. The last three fully
connected layers classify the high-level features extracted by convolution (Simonyan &
Zisserman, 2015).

VGG16 was widely used in image classification tasks as one of the classic
convolutional neural network (CNN) architectures. VGG16’s deep structure and small-
sized convolution kernels have made it a foundational architecture in image
classification applications in recent years. These properties enable VGG16 to capture
rich feature information, resulting in high accuracy on huge datasets like ImageNet
(Kumar, S. & Kumar, H., 2024). Despite these developments, VGG16 remains a
baseline model for comparing newer architectures in tasks like object detection and
medical picture categorization. Although the earliest proposed VGG16 was

computationally intensive, researchers optimized its performance in various ways to
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meet the needs of efficient classification. For example, some studies use transfer
learning to accelerate the model training process while improving the accuracy of few
sample tasks. VGG16 and VGG19 were proposed using CNN architectures for
processing medical images to classify brain tumors and pneumonia. Transfer learning
strategies and data augmentation techniques reduced overfitting by fine-tuning and
freezing models, enhancing classification reliability (Al-Azzwi, 2024). A hybrid
pre-trained VGG16 convolutional neural network (CNN) and support vector machine
(SVM) classifier model was also proposed. VGG16 was used to extract features from
input remote sensing data, while the SVM classifier performed classification output
based on the feature map output by CNN (Tun, N. L., Gavrilov, Tun, N. M., Trieu, &
Aung, 2021). In addition, VGG16 is integrated into multiple model structures and
combined with other networks such as ResNet and Inception to improve classification
accuracy. For example, the publicly available chest X-ray image dataset obtained from
the Kaggle platform was used for pneumonia recognition, and an improved VGG16
model was employed to improve the classification accuracy of pneumonia X-ray images
(Jiang, Liu, Shao, & Huang, 2021). In order to further improve the classification
performance of remote sensing images, many researchers have explored hybrid models
that combine traditional machine learning methods with deep learning techniques. A
pre-trained VGG16 network was combined with a support vector machine (SVM)
classifier to form a hybrid classification model. In this type of model, VGG16 was
responsible for extracting features from the input remote sensing image, while SVM
makes classification decisions based on the feature map output by CNN (Tun et al.,
2021).

2.7 Feature Extraction

Feature extraction refers to the process of extracting useful information from
raw data. Typically, it simplifies the data’s complexity while preserving pertinent
information for the task. Many fields, particularly image processing, natural language
processing, and biomedical data analysis, have widely applied and developed feature

extraction in recent years.
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2.7.1 Feature Extraction in Image Processing

Research on low-level feature extraction (such as color, texture, and shape
features) in image processing continues to advance, especially in content-based image
retrieval (CBIR), where it has found widespread application. These methods could
effectively capture the physical features of images, helping the system to better classify
and retrieve images. Wang, Han, and Jin (2019) applied sparse representation to extract

global and local features, thereby improving retrieval efficiency and accuracy.

2.7.2 RGB Features

The RGB color model is crucial in various fields, especially in digital imaging
and computer graphics. It signifies colors as combinations of three fundamental hues:
red, green, and blue. Each color channel can take values typically ranging from 0 to 255,
enabling the depiction of more than 16 million unique colors. Recent research works
have investigated multiple aspects of the RGB color model. A study examined the
impact of color space selections on deep learning image colorization, revealing that
different color representations can significantly affect model performance in image
restoration and classification tasks (Kong, Tian, Duan, & Long, 2021). Another study
investigated the reassessment of RGB representation to enhance image restoration
models, suggesting that improvements in RGB processing could produce better results
in real-world applications. The effectiveness and applicability of the RGB color model
in various contexts have prompted ongoing investigation into other color spaces that
may offer advantages in specific scenarios, particularly in machine learning and
computer vision (Ballester et al., 2022). Each channel’s value typically ranges from 0
to 255, indicating the intensity levels of red, green, and blue, respectively (Poynton,
2012). In contrast, the L*a*b* color model is grounded in human visual perception and
is composed of three components: L (lightness), a (from green to red), and b (from blue
to yellow) (Sharma, 2017).

The L*a*b* color space is a color representation grounded in human visual

perception, designed to offer a model that more accurately reflects actual colors. L*a*b*
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color space is a color representation model based on human visual perception, which
has been widely used in image processing and color management fields for its accurate
description of colors and uniform color distribution characteristics. This space consists
of three components: L represents brightness, a represents the red green axis, and b *
represents the yellow blue axis. This structural design enabled it to accurately
characterize color changes (Luo, Cui, & Rigg, 2001). Utilizing the L*a*b* color space
enabled users to exert more precise control over colors, thereby improving the visual
effects of digital photographs (Borenstain, Bar-Haim, Goldshtein, & Cohen-Taguri,
2020).

RGB and L*a*b* color measurements were utilized to classify the ripeness of
Banganapalli mangoes during their ripening process. The significance level for RGB and
L* a* b* data concerning ripening days was analyzed using ANOVA. During the ripening
phase, the L*a*b* values and RGB values were statistically significant (P < 0.01).
Compared to L*a*b* color measurement, RGB color measurement would be more
appropriate because it only requires a straightforward image processing technique and
inexpensive equipment. The red ratio (R/B), the green ratio (G/B), and both blue ratios

accurately predicted mango ripening (EyNambi, Thangavel, Shahir, & Geetha, 2015).

2.8 Softmax Function

Softmax is a mathematical function used to convert a set of values (such as
logits output by a model) into a probability distribution. It is commonly used in the final
layer of classification problems, mapping the scores (logits) of each class to values
within the [0, 1] interval and ensuring that the sum of probabilities for all classes is 1
(Goodfellow, Bengio, & Courville, 2016). The last layer in the MobileNet architecture
is usually a fully connected layer. A softmax function changes the output from this layer
to a normalized probability distribution, which ends the classification task. The
extraction of softmax values not only yields the model's prediction outcomes but also
assesses the model's confidence via these probability values. In image classification
tasks, the highest value produced by softmax typically indicates the model's most

confident predicted category (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018).
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2.9 KNN, Support Vector Regression (SVR), and Linear Regression for

Prediction

In recent years, various fields have widely applied KNN, an instance-based
nonparametric algorithm, to prediction tasks. Its simplicity and ease of implementation
make it perform well on small datasets (Zhan, Zhang, & Liu, 2021). However, KNN is
sensitive to data noise and parameter K values, and researchers have proposed various
optimization methods to improve its predictive performance. For example, some studies
combined particle swarm optimization (PSO) algorithms to automatically tune K values,
thereby reducing prediction errors (Xie et al., 2024). The KNN algorithm is widely used
in classification analysis, but it is susceptible to interference from noisy samples, which

can affect classification performance and prediction accuracy (Ukey et al., 2023).

SVR is an extension of SVM aimed at solving nonlinear relationships in
regression problems. SVR maps data to high-dimensional space through kernel
functions, enabling accurate prediction on complex nonlinear datasets. In the past few
years, SVR has performed well in multiple fields, especially in meteorology, hydrology,
energy load forecasting, and other areas (Zhan et al., 2021). Researchers have come up
with better ways to choose kernel functions and optimize parameters, like combining
Bayesian optimization or grid search, to make SVR better at making predictions and
applying its findings to more situations (Sahoo, Hoi, & Li, 2019). In the fields of energy
consumption and environmental pollutant concentration prediction, the combination of
SVR with other algorithms, such as genetic algorithms and neural networks, has shown
good prediction performance (Li, 2020). SVR performs well in handling time series data

with strong nonlinear relationships and has strong application value.

The linear regression model is still widely used in predictive analysis due to its
advantages in interpretability and ease of implementation. Demand forecasting, socio-economic
analysis, and market trend research commonly employ linear regression. Its modeling
simplicity and ease of explanation make it effective on structured datasets (Braun, Altan,
& Beck, 2014). Some researchers use linear regression along with multivariate statistical

analysis (like factor analysis and principal component analysis) to lessen the effect of
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multicollinearity on how well predictions work (Hirose, H., Soejima, & Hirose, K.,
2012). Recently, researchers have gradually combined linear regression with machine
learning methods to enhance the applicability and accuracy of predictions. Linear
regression is one of the most interpretable prediction models (Munkhdalai, Munkhdalai,
& Ryu, 2022).



Chapter 3

Research Methodology

The chapter outlined the materials, methods, and instruments used in the study,
detailing the data collection processes for banana image classification, Brix, and pH
prediction. It also explains the preparation of banana samples, acquisition of image and

color data, and the methodologies for data analysis.

3.1 Research Materials

3.1.1 Data for Creating Image Classification

The experiments used 1307 images of a banana (Musa acuminata). For the training
and testing, the images were divided into 80% and 20%. Using 80% of the images for
training and 20% of the images for testing, a total of 1047 images of a banana, consisting of
205, 212, 155, 120, 106, 103, and 146 images of class 0, class 1, class 2, class 3, class 4,
class 5, and class 6, were used for training. For the test, a total of 260 images of a banana
consisting of 51, 53, 39, 30, 26, 25, and 36 images of classes 0 through 6 were classified.
The standards used to categorize bananas were clear, allowing even non-experts to classify

them reasonably correctly (Chen & Phoophuangpairoj, 2024).

3.1.2 Data Used for Brix and pH Prediction

The MobileNet was constructed from 80 images of bananas for the purpose of
feature extraction, as determined by the findings of Hong and Phoophuangpairoj (2024).
The Brix and pH prediction was examined using the softmax derived from a MobileNet
and RGB, L*a*b*, Brix, and pH values measured from 12, 11, 13, 11, 13, 10, and 10
bananas of class 0 to class 6, respectively. Linear regression, SVR regression, and KNN
regression were used to analyze the data, which included three spots of RGB values,

three spots of L*a*b*, Brix, and pH values, and softmax outputs from MobileNet. R2



19

and the discrepancies between actual and predicted values served as the basis for the

evaluation.

3.2 Research Instruments and Software

3.2.1 Instruments Used in Data Collection

Table 3.1 Instruments
No. Instruments

Photo Box (PULUZ) 40 x 40 x 40 cm

iPhone 14 proMax camera
Colorimeter (Linshang LS171)
Centrifuge (SURYQ 800D)

Brix Refractometer (ATAGO PAL-1)
pH Tester (YIERY | BLE-C66)

IS2IN L T B R A

A photo box (PULUZ 40 x 40 x 40 cm) and an iPhone 14 camera were used in
this work to take pictures of bananas, and a Linshang LS171 colorimeter was used to
measure each banana's color. To extract juice, the banana was blended and put into a
tube. Then the juice was separated from the pulp using a centrifuge (SURYQ 800D) to
extract the banana juice. The pH and Brix values were measured using a BLE-C66 pH
tester and an ATAGO PAL-1 Brix refractometer. The tools utilized to gather pictures,

color values, Brix, and pH readings of banana juice were displayed in Figure 3.1.
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Figure 3.1 Instruments: (1) Photo Box, (2) iPhone 14 ProMax camera, (3) Centrifuge,

(4) Colorimeter, (5) pH tester, (6) Brix refractometer

Source: Researcher
3.2.2 Research Software and Algorithms

Python and machine learning packages, namely TensorFlow, Keras, and scikit-learn,
were used to create the MobileNet, CNN, ResNet50, and VGG16 classifiers.
Additionally, linear regression, SVR, and KNN were used to predict Brix and pH values
from RGB and L*a*b* colors.

Python served as the core programming language, integrating various machine
learning frameworks and algorithms. It was used to implement classification models
(MobileNet, CNN, ResNet50, and VGG16) and regression models (linear regression,
SVR, and KNN) for predicting Brix and pH values.

TensorFlow and Keras were employed to construct deep learning models such
as MobileNet, CNN, ResNet50, and VGG16. They provided the tools for defining,
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training, and fine-tuning these architectures, enabling accurate classification of banana

ripeness into seven levels.

Scikit-learn was used to implement machine learning algorithms like linear
regression, SVR, and KNN. These models predicted the Brix and pH values using the

softmax outputs of MobileNet as input features.

MobileNet, a lightweight convolutional neural network architecture, was
optimized for mobile and embedded vision applications. It was applied to classify
banana ripeness into seven levels, with its softmax layer outputs further utilized as

inputs to regression models for predicting Brix and pH values.

Linear regression was employed to establish a linear relationship between the
softmax outputs of MobileNet and the target values (Brix and pH). By fitting a straight
line to the data, it provided a simple and interpretable model for predicting sweetness

and acidity levels of bananas.

SVR was utilized to capture more complex, non-linear relationships between
the MobileNet softmax outputs and the target values. By employing kernel functions,

SVR offered a flexible approach for improving the accuracy of Brix and pH predictions.

KNN predicted Brix and pH values by finding the k most similar data points
(neighbors) in the feature space of MobileNet softmax outputs. It calculated the average
of the neighbors' target values, allowing for a robust and non-parametric approach to

regression.

3.3 Data Collection

Figure 3.2 illustrates the steps involved in data collection: 1) Purchase bananas,

2) Collect banana sample images, 3) Collect banana color data, 4) Collect banana juice,

5) Measure Brix values, and 6) Measure pH values.
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Figure 3.2 Data collection flow

3.3.1 Purchase Bananas

22

The bananas used in the study were all purchased from the Simummuang

market, with only immature bananas from the first stage being purchased. The

remaining banana grades were left at home to wait and observe changes in banana

ripeness.
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Figure 3.3 Simummuang market selling bananas

Source: Researcher

3.3.2 Collect Banana Images

As shown in Figure 3.4, the photographs of bananas were taken using an iPhone
14 Pro Max camera and a PULUZ lighting studio shooting tent box measuring 40 x 40
X 40 cm, which provided 24-26 lumen LED brightness and a color temperature of 5500

kelvins.

RO\

iPhone 14
ProMax camera

Photo Box

Banana

Figure 3.4 Collecting banana image
Source: Researcher
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3.3.3 RGB and L*a*b* Color Data Collection

A colorimeter was used to measure the RGB and L*a*b* color values. RGB
and L*a*b* color values were measured from one parts of a banana middle position, as

shown in Figure 3.5.

Figure 3.5 Banana color measurement positions

——
N

g
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Figure 3.6 Using a colorimeter to measure RGB and L*a*b* color values

Figure 3.6 shows the RGB and L*a*b* color values of bananas measured using
a colorimeter. After collecting all color values, RGB and L*a*b* values were saved in
an Excel table file.
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Lab: 72.59, 4.04, 43.79
LCh: 72.59, 43.97, 84.72
RGB: 210, 173, 96

Lab: 69.19, 5.06, 40.97
LCh: 69.19, 41.28, 82.95
RGB: 200, 164, 93

LCh: 72.51, 39.84,85.85 .
RGB: 206, 174, 104

Lab; 37.51, 7.29, 21.66
LCh: 37.51, 22.85, 71.39
RGB: 110, 83, 63

. Lab: 72.51, 2.88, 39.74

Lab: 44.16, 1.37, 22.23
LCh: 44.16, 22.27, 86.47
RGB: 119, 1083, 67

Figure 3.7 RGB and L*a*b* color data from 5 banana

Source: Researcher
3.3.4 Collect Banana Juice

The juice extraction started with putting each banana into a blender and then
putting the blended flesh of the banana into a tube. Next, put the tube containing the
banana pulp into the centrifuge. For grade 1-3 banana pulp, the centrifuge time was set
to 45 minutes, and the speed was 3000 r/min. For grade 4-7 banana pulp, the centrifuge
time was set to 20 minutes, and the speed was 2000 r/min. Figure 3.6 showed examples

of extracted banana juices.

Extracted
banana juice

Figure 3.8 Extracted banana juice
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3.3.5 Measure Brix Values

When measuring banana juice with a Brix refractometer, take 1-2 drops of the
extracted juice and drop them onto the detection lens of the Brix refractometer. The Brix
values of all banana samples were measured and recorded. Figure 3.7 showed the Brix
measurement.

Figure 3.9 Brix measurement

3.3.6 pH Measurement

To measure the pH value, submerge the meter in banana juice, then wait 30
seconds for the reading to be stable before recording the data.

Figure 3.10 pH measurement
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3.3.7 Dataset

Table 3.2 displayed the data used in the experiments for classifying banana

ripeness and predicting Brix and pH values.

Table 3.2 Dataset

No. Dataset Name Description Number of Data
Total images | 1307 images
1. Image Data For training 1047 images
For testing 260 images
For prediction | 240 values measured
2. RGB values using a colorimeter

from 80 bananas
For prediction | 240 values measured

3. L*a*b* values using a colorimeter
from 80 bananas

4. Brix values For prediction | 80 values

5. pH values For prediction | 80 values

3.4 Data Analysis

3.4.1 Using MobileNet, ResNet50, CNN Classifiers for Banana Image

Classification

Figure 3.11 showed the image classification flow of the first part of the study.
After collecting banana images, resize banana images. The images were resized to 224
X 224 pixels. Subsequently, MobileNet, CNN, and ResNet50 were trained and employed

to classify the banana images.
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Figure 3.11 Banana ripeness classification flow
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3.4.2 Using Different Predictors to Predict Brix and pH Values Based on

MobileNet Softmax

As shown in Tabl 3.12, the seven outputs from a softmax layer were extracted

and used as features to predict Brix and pH values. The features were extracted using

MobileNet. The second part of this study was to use different prediction methods to

predict Brix and pH values based on softmax values as input features. The prediction

models utilized in this study include linear regression and SVVR, which employs linear,

polynomial, and radial basis kernel functions, and KNN. The experiment aimed to

compare the performance of these models in predicting Brix and pH values.

Banana
images

Resize an
image

Machine learning

T salmmax
outpwts

#| Linear Regression

Briz.pH

_ EVR(linear

kermal)

Brix,pH

S5VR(pohynomial

(MobileNet)

kernal)

Brix pH

5VK [radial basis

funetion kernal)

Briz.pH

Briz.pH

Figure 3.12 Using different predictors to predict Brix and pH values
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3.4.3 Using Different Predictors to Predict Brix and pH Values Based on

d L*a*b* Values
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Banana
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7 zoftmax
outputs

Y

Linear Regression == Briv.pH
S"I?:f_f:;“ > BricpH
S‘.'Rizl]}:;?mial - Brix,pH
TR | g
KNN —|  Brixv,pH

Figure 3.13 Using different predictors to predict Brix and pH values based on

RGB and L*a*b*

The second part used different prediction methods to predict Brix and pH

values based on RGB and L*a*b* color values as input features. The prediction models

utilized in this study include linear regression and SVR, which employs linear,

polynomial, and radial basis kernel functions, as well as KNN. The experiments aimed

to compare the performance of these models in predicting Brix and pH values.

3.4.4 Result Analysis Methodology

Accuracy, the overall proportion used to measure the correctness of a model

TP : True Positive
TN : True Negative
FP: False Positive

FN : False Negative

Accuracy =

TP+TN

TP+TN+FP+FN

(3-1)
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Precision formula refers to the proportion of samples predicted as belonging
to a certain category that actually belongs to that category, calculated using the

following formula:
TP

ision = ——— 3.2
Precision TP TP (3-2)

Recall refers to the proportion of samples that are correctly predicted as

belonging to a certain category, calculated using the following formula:
TP

Recall = m (3-3)

The F1 Score formula balances the relationship between the harmonic mean of

precision and recall, calculated using the following formula:

ad 2 Precision * Recall (3 4)
== * -
KNS Precision + Recall

Absolute error is the difference between the predicted value and the true value,

calculated using the following formula:

Absolute error = |Predict value — Actual value| (3-5)

Relative error is the ratio of absolute error to the true value, calculated using

the following formula:

y |Predict value — Actual value)|
Relative error = (3-6)
|Actual value|

The percentage error is the percentage form of relative error, and the

calculation formula is:

|Predict value — Actual value)|
Percentage error = * 100 (3-7)
|Actual value|

R? : The coefficient of determination measures the goodness of fit of a
regression model to data, with values ranging from 0 to 1. The closer R? is to 1, the
better the model fits and can explain more variance.

SS res: The formula for calculating the difference between the predicted and

actual values of the model is:

SSpes = ) (1 = y2)? (3-8)
i=1
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SS tot: The formula for calculating the difference between the actual value and
the average value is:

SStor = ) (i = 7V (3-9)

R? formula is as follows:

SSres

R?=1- 5., (3-10)




Chapter 4

Research Results

4.1 Image Classification Results

This section employed CNN, ResNet50, MobileNet, and VGG16 models for
the classification and analysis of banana ripeness. Firstly, the percentages of these four
models in correctly and incorrectly classifying banana ripeness images were illustrated.
The classification performance of each model was compared. Then, based on the
classification results, generate a table containing accuracy, recall, and F1-scores to
quantitatively analyze the performance of different models in banana ripeness
classification. In the experiment, 20% of the images were used for testing and 80% for
training. A total of 1047 banana images were used for training, including 205, 212, 155,
120, 106, 103, and 146 images of classes 0, 1, 2, 3, 4, 5, and 6, respectively. In the test,
a total of 260 banana images were classified, consisting of 51, 53, 39, 30, 26, 25, and 36
images from 0 to 6 classes. The dataset included more images of immature bananas in

classes 0, 1, 2, and 3, as they were easier to collect from wholesale markets.

4.1.1 80% Images for Training and 20% Images for Testing

Figure 4.1 displays the stacked graph of the MobileNet. Class 1 achieved an
accuracy of 98.11%, while a minority (1.89%) misclassified class 1 bananas as class 0
bananas. Class 2 achieved an accuracy of 94.87%, with 5.13% of the images incorrectly
predicted as class 1. The accuracy attained in class 3 and 4 were 100% and the accuracy
of class 5 was 96%. The model incorrectly classified 4% of the class 5 images as class
6. Overall, the model performed well in the banana ripeness classification, especially
class 0, 3, 4, and 6.
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Figure 4.1 Percentage of accurate and inaccurate banana image classification using

MobileNet (80% of images used for training, 20% for testing)

Table 4.1 shows that the MobileNet model performed very well in classifying
banana ripeness, with accuracy, recall, and F1-score all approaching or equal to 1.00,
especially in Class 0, Class 3, and Class 4, where accuracy and recall are both 1.00. The
overall accuracy was 98%, indicating that the model could accurately distinguish
bananas of different ripeness levels and was a very effective classifier.

Table 4.1 Precision, recall, and F1-score using MobileNet with 80% of images for

training and 20% for testing

Result
Real precision recall F1-score support
class
Class 0 1.00 1.00 1.00 49
Class 1 0.98 0.98 0.98 53
Class 2 0.95 0.97 0.96 39
Class 3 1.00 1.00 1.00 30
Class 4 1.00 1.00 1.00 26
Class 5 0.96 0.96 0.96 25
Class 6 0.97 1.00 0.99 36




Table 4.1 Precision, recall, and F1-score using MobileNet with 80% of images for
training and 20% for testing (continued)
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Result
Redl precision recall F1-score support
class
Macro avg 0.98 0.984 0.984 258
Weight avg 0.982 0.984 0.983 258

Figure 4.2 displays a stacked graph of prediction results of the ResNet50 model

in different classes. The accuracy of class 1 is 96.23%, with a small number of images

(1.89%) being incorrectly predicted as class 0 and class 2. The accuracy of class 2 is

97.37%, with only 2.63% of the images being incorrectly predicted as class 1. The

accuracy of category 3 is 96.67%, and 3.33% of the images were misclassified as class

4. The classification performance of class 4 is poor, with an accuracy rate of 65.38%.

23.08% of the images were incorrectly predicted as class 5, and 11.54% of the images

were misclassified as class 3. The accuracy of class 5 is 88%, but 12% of the images

were incorrectly predicted as class 6.

Stacked Bar Chart (ResNet(80%:-20%))
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Figure 4.2 Percentage of correct and incorrect banana image classification using

ResNet50 (80% of images used for training, 20% for testing)
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Table 4.2 summarizes the precision, recall, and F1-score for the ResNet50
model, using 80% of the images for training and 20% for testing. Class 0 and Class 6
showed excellent performance, with high F1-scores of 0.95 and 0.96, respectively,
indicating effective classification for these classes in terms of both precision and recall.
However, Class 4 and Class 5 had relatively lower F1-scores of 0.82 and 0.87,

respectively.

Table 4.2 Precision, recall, and F1-score using ResNet50 with 80% of images for

training and 20% for testing

Result
Real precision recall F1-score support
class
Class 0 0.98 0.92 0.95 49
Class 1 0.94 0.91 0.93 53
Class 2 0.93 0.97 0.95 39
Class 3 0.96 0.83 0.89 30
Class 4 0.84 0.81 0.82 26
Class 5 0.80 0.96 0.87 25
Class 6 0.92 1.00 0.96 36
Macro avg 0.90 0.91 0.91 258
Weight avg 0.92 0.92 0.92 258

Figure 4.3 shows a stacked graph based on the CNN for banana ripeness
classification. The accuracy of class 0 was 96.08%. The accuracy of class 1 was 90.57%,
but 9.43% of the images were misclassified as class 0. The accuracy of class 2 was
94.87%, with only a few images (5.13%) misclassified as class 1. The accuracy of class
3 was 96.67%, with 3.33% of the images misclassified as class 4. The accuracy of class
4 was 92.31%, and 7.69% of the images were misclassified as class 5. Classes 5 and 6

had excellent classification performance, with no misclassifications.
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Stacked Bar Chart (CNN(80%-20%))
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Figure 4.3 Percentage of correct and incorrect banana image classification using CNN
(80% of images used for training, 20% for testing)

Table 4.3 displays the precision, recall, and F1-score of CNN, using 80% of
images for training and 20% for testing. The CNN achieved 1.00 accuracy, recall, and
Fl-score in classifying banana ripeness images for Class 5 and Class 6, but its
classification accuracy was lower than MobileNet in other classes, with Class 1 only

achieving an accuracy of 0.90.

Table 4.3 Precision, recall, and F1-score using CNN with 80% of images for training
and 20% for testing

Result
Real precision recall F1-score support
class
Class 0 0.96 0.93 0.96 49
Class 1 0.90 0.91 0.91 53
Class 2 0.93 0.95 0.95 39
Class 3 0.96 0.96 0.97 30
Class 4 0.92 0.91 0.92 26
Class 5 1.00 1.00 1.00 25




37

Table 4.3 Precision, recall, and F1-score using CNN with 80% of images for training

and 20% for testing (continued)

Result
Real precision recall F1-score support
class
Class 6 1.00 1.00 0.99 36
Macro avg 0.952 0.952 0.957 258

Figure 4.4 shows a stacked chart based on the VGG16 model for banana

ripeness classification. The chart primarily correctly classified Class 0 as Class 0, with

an accuracy rate of 95.92%, but misclassifies Class 1 as Class 1 by 4.08%. The

classification performance of Class 1 was good, with an accuracy of 94.34%. However,

1.89% of the samples were misclassified as Class 0, and 3.77% were misclassified as

Class 2. Class 2 was almost completely correctly classified with an accuracy rate of
97.43%, with only 2.56% misclassified as Class 1. The accuracy of Class 4 was 96.15%,

but 3.85% was misclassified as Class 5. The accuracy of Class 5 was 96%, with 4% of

samples misclassified as Class 6. This indicates that the VGG16 model had good

classification accuracy in most categories, but there were some misclassifications in

some similar categories.

Stacked Bar Chart (VGG16(80%-20%))
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Figure 4.4 Percentage of correct and incorrect banana image classification using
VGG16 (80% of images used for training, 20% for testing)
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Table 4.4 presents the precision, recall, and F1-score for the VGG16 model,
using 80% of the images for training and 20% for testing. The results showed that Class
3 and Class 6 had excellent performance, with F1-scores of 1.00, indicating that the
model correctly classified these classes in terms of precision and recall. Class 1

performed somewhat worse than the other classes and had precision and recall at 0.94.

Table 4.4 Precision, recall, and F1-score using VGG16 with 80% of images for

training and 20% for testing

Result
Real precision recall F1-score support
class
Class 0 0.98 0.96 0.97 49
Class 1 0.94 0.94 0.94 53
Class 2 0.95 0.97 0.96 39
Class 3 1.00 1.00 1.0 30
Class 4 1.00 0.96 0.98 26
Class 5 0.96 0.96 0.96 25
Class 6 0.97 1.00 0.99 36
Macro avg 0.971 0.971 0.971 258
Weight avg 0.92 0.971 0.972 258

The results showed that MobileNet stands out with the highest accuracy of
98.45%, making it the best-performing model and particularly suitable for classifying
banana ripeness. The accuracy of VGG16 and CNN is 96.82% and 95.79%, respectively,
both showing strong classification ability, but their efficiency was slightly lower than
MobileNet. Despite ResNet50's power, its performance was relatively low at 92.43%,
suggesting that it may not have received the same optimization for this specific task as
other models. Table 4.5 compares the performance of MobileNet, ResNet50, CNN, and
VGG16 classifiers with 80% of images for training.
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Table 4.5 Accuracy when using MobileNet, ResNet50, CNN, and VGG16 to classify

banana ripeness

Classification Method Accuracy
MobileNet 98.45%
ResNet50 92.43%

CNN 95.79%
VGG16 97.10%

When 70% of the images were used for training and 30% for testing,
MobileNet achieved an accuracy of 93.90%, which still outperformed ResNet50 and
CNN. However, when the training data was increased to 80% and the testing data
reduced to 20%, the accuracy of MobileNet significantly improved to 98.45% (Chen &
Phoophuangpairoj, 2024). Future research will necessitate more training and testing

photos to gain a better understanding of the accuracy obtainable with each method.

4.2 Predicting the Internal Properties of Bananas Using Softmax Values

This section of the chapter discussed in detail the use of classification results
obtained from the Softmax layer to determine the internal characteristics of bananas.
The Brix and pH values were measured from 12, 11, 13, 11, 13, 10, and 10 bananas of
class 0 to class 6, respectively, for the Brix and pH prediction. In the prediction process,
the output values of the Softmax layer were used as features to predict the Brix and pH

values of bananas using linear regression, SVR, and KNN, respectively.

4.2.1 Use Linear Regression to Predict the Brix Values

The following equation was the equation obtained from applying the linear

regression to predict Brix values:
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PredictedBrixvalue=(Softmax0*-16.99)+(Softmax1*-14.49)+(Softmax2*-
8.148)+(Softmax3*-3.196)+(Softmax4*-0.2)+(Softmax5*2.592)+(Softmax6*-
0.867)+20.264 (4-1)

According to literature, if the R? value is between 0.3 and 0.5, it usually
indicates a weak or low effect size. If the R? value is between 0.5 and 0.7, it is considered
to have a moderate effect size and display considerable explanatory power. A value of
R2 higher than 0.7 is usually considered a strong effect size, indicating that a significant
portion of the variability in the dependent variable can be explained by the model
(Minitab Blog Editor, 2013). Linear regression was conducted with softmax and Brix
values, yielding an R? of 0.958, signifying that the equation could reliably forecast the

outcomes.

Table 4.6 displays the absolute error, standard deviation, relative error, and
percentage error for each banana class when using the linear regression model for Brix
prediction. In terms of absolute, relative, and percentage errors, the model had relatively
good prediction performance, as indicated by the minimum errors between Class 0 and
class 6. However, class 2 showed a high error rate, indicating that the Brix values were

still relatively difficult to predict using linear regression.

Table 4.6 Brix prediction errors when using linear regression

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

pbsolte | 01679 | 07340 | 2.1577 | 1.0635 | 0.7462 | 0.9246 | 0.5078 | 0.9113

Standard

deviation 0.1112 0.3971 2.1491 0.9728 0.5430 0.6538 0.0205 1.1258

eRr?Lartive 0.0502 0.1516 0.2105 0.0641 0.0358 0.0418 0.0418 | 0.0842

Standard

deviation 0.0328 0.0912 0.2278 0.0626 0.0246 0.0299 0.0205 | 0.1165

POrCeNt?0e | 50200 | 15.1634 | 210536 | 64111 | 35787 | 4.1797 | 26290 | 8.4182

Standard

deviation 3.2808 9.1199 | 22.7832 | 6.2596 2.4558 2.9908 2.0487 | 11.6491
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Figure 4.5 shows the results of using linear regression to predict the Brix value
based on softmax values. The obtained R? value was 0.958, indicating a correlation
between the measured and predicted values. But there were obvious errors found in the
bananas numbered 23, 24, 25, 28, and 41.

Measured and predicted Brix values
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Figure 4.5 Graphs of measured and predicted Brix values when using linear regression

4.2.2 Use Linear Regression to Predict pH

The following equation was the equation obtained from applying the linear

regression to predict pH values:

PredictedpHvalue=(Softmax0*-0.723)+(Softmax1*-0.418)+(Softmax2*-
0.261)+(Softmax3*-0.190)+(Softmax4*-0.002)+(Softmax5*0.194)+(Softmax
6*-0.562)+4.771 (4-2)

Linear regression was performed using softmax and pH values, with an R? of

0.929, indicating that the equation can accurately predict the results.

Table 4.7 shows the pH prediction errors when using linear regression. The
absolute error, relative error, and percentage error of all classes were 0.0861, 0.0189,

and 1.8868, respectively. The results revealed that certain classes, including class 0 and
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class 6, exhibited high errors, suggesting that the model was still unable to provide

accurate predictions.

Table 4.7 pH prediction errors when using linear regression

class0 | class 1 class 2 class 3 class 4 class 5 class 6 All

classes

jrtr’jf'”‘e 0.1501 | 0.0589 | 0.0511 | 0.0935 | 0.0618 | 0.0865 | 0.1031 | 0.0861

Standard

Seviation 0.0692 | 0.0431 | 0.0467 | 0.0549 | 0.0515 | 0.0718 | 0.0144 | 0.0661

Erffr“"e 0.0370 | 0.0135 | 0.0113 | 0.0204 | 0.0128 | 0.0175 | 0.0175 | 0.0189

Standard

Seviation 0.0172 | 0.0097 | 0.0103 | 0.0122 | 0.0103 | 0.0145 | 0.0144 | 0.0148

Efrgcre”tage 3.6995 | 1.3530 | 1.1332 | 2.0416 | 1.2768 | 1.7496 | 1.9186 | 1.8868

Standard

Seviation 1.7154 | 0.9745 | 1.0275 | 1.2168 | 1.0307 | 1.4531 | 1.4377 | 1.4849

Figure 4.6 shows the measured and predicted pH values under the linear
regression model, with red diamonds representing measured values and blue dots
representing predicted values. There was a significant deviation between the predicted
values and the measured values, such as the values numbered 6 through 11, where the

errors were high.

Measured and predicted pH values
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Figure 4.6 Measured and predicted pH values when using linear regression
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4.2.3 Use SVR to Predict Brix and pH Values

The study applied support vector regression (SVR) models to predict the Brix
and pH values of bananas using the MobileNet Softmax values. To make predictions
more accurate, the researcher compared the performance of three SVR kernel functions:
the polynomial kernel function, the radial basis kernel function, and the linear kernel

function.

4.2.3.1 Use SVR (polynomial kernel) to Predict Brix Values

Table 4.8 displays the errors in predicting Brix values using the SVR
(polynomial kernel). An interesting finding was that the SVR (polynomial kernel) was
not very good at predicting Brix values. This was especially true for some classes of

bananas, like class 1, class 2, class 4, and class 5.

Table 4.8 Brix prediction errors when using SVR (polynomial kernel)

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

posolute | 10734 | 15962 | 19812 | 0.6373 | 15467 | 18926 | 0.5986 | 1.3203

Standard

oo | 1.2485 | 0.9649 | 23929 | 06863 | 1.0435 | 1.3898 | 0.0180 | 1.3614

Erf'oar“"e 0.3172 | 0.2903 | 0.2003 | 0.0368 | 0.0740 | 0.0856 | 0.0856 | 0.1491

Standard

et | 0.3817 | 0.1480 | 0.2716 | 0.0411 | 0.0469 | 0.0626 | 0.0180 | 0.2169

Eﬁ:}cre”tage 31.7249 | 29.0282 | 20.0314 | 3.6774 | 7.4021 | 85563 | 3.0993 | 14.9052

3;‘;‘,?;?;‘:] 38.1668 | 14.8023 | 27.1575 | 4.1147 | 4.6904 | 6.2618 | 1.8003 | 21.6909

Figure 4.7 illustrates the results of employing SVR with a polynomial
kernel to predict the Brix values of bananas. The R? value of the model was 0.925,
signifying that the SVR model could elucidate about 92.5% of the Brix value.
Nevertheless, there were considerable variations and discrepancies between the

predicted and measured values.
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Figure 4.7 Graphs measured and predicted Brix values when using SVR with a
polynomial kernel

4.2.3.2 Use SVR (polynomial) to Predict pH Values

Table 4.9 presents a summary of the errors associated with the use of
the SVR (polynomial kernel) model for pH prediction. Although the relative error and
percentage error are generally low, specific classes, such as class 0 and class 6, still
exhibited rather large error values. This indicates that the model had difficulty capturing
changes in the pH values.

Table 4.9 pH prediction errors when using SVR (polynomial kernel)

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

ﬁrtr’jf'“te 0.1538 | 0.0677 | 0.0605 | 0.0772 | 0.0715| 0.0853 | 0.1089 | 0.0888

Standard

e 0.0993 | 0.0455 | 0.0432 | 0.0580 | 0.0553 | 0.0723 | 0.0160 | 0.0725

Erf'oar“"e 0.0382 | 00156 | 00135 | 00168 | 00148 | 00171 | 00171 | 0.0195

Standard

Sevition 0.0259 | 0.0106 | 0.0096 | 0.0128 | 0.0111 | 0.0145| 0.0160 | 0.0167

Eﬁfre”‘age 3.8177 | 15602 | 1.3476 | 1.6802 | 1.4754 | 1.7092 | 2.0196 | 1.9468

Standard

Sevition 25896 | 1.0571 | 0.9617 | 1.2767 | 1.1076 | 1.4498 | 1.5964 | 1.6744
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Figure 4.8 illustrates the results of using SVR (polynomial kernel) to

anana pH values. Although the overall trend was consistent, there were some

deviations between the predicted values and the measured values at certain data points

(such as

the values numbered 6 through 9). The R2 value is 0.914, indicating that the

SVR polynomial kernel model could explain 91.4% of pH changes.

pH values

I
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Figure 4.8 Graphs of measured and predicted pH values when using SVR with a

with an

polynomial kernel

4.2.3.3 Use SVR with RBF Kernel to Predict Brix VValues

Table 4.10 shows the prediction error for Brix values using the SVR

RBF kernel. Although the average error is within an acceptable range, some

classes, such as class 2 and class 5, had poor prediction performance.

Table 4.10 Brix prediction errors when using SVR with an RBF kernel

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

ﬁr‘r’jf"“te 0.8231 | 1.1310 | 1.8004 | 05300 | 0.9920 | 1.9357 | 0.6667 | 1.0975
Standard

deviation 0.2414 0.9482 2.5407 0.7044 0.9411 1.2025 0.0200 | 1.2811
Relative

error

0.2395 | 0.1984 | 0.1857 | 0.0312 | 0.0460 | 0.0863 | 0.0863 | 0.1176
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Table 4.10 Brix prediction errors when using SVR with an RBF kernel (continued)

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All
classes
Standard
deviation 0.0608 0.1166 0.2834 0.0439 0.0420 0.0495 0.0200 | 0.1456

Percentage | 239511 | 19.8419 | 18.5736 | 3.1178 | 4.6018 | 8.6262 | 3.4149 | 11.7587

error

Standard
deviation

6.0790 | 11.6611 | 28.3384 | 4.3870 | 4.2002 | 4.9497 | 1.9973 | 14.5635

Figure 4.9 shows the results of using the SVR with a radial basis

kernel to predict banana Brix values. This figure shows the comparison between the

actual measured Brix values and the predicted Brix values. Although the overall trend

is consistent, there is still a certain degree of fluctuation and error at certain data points

(such as the values numbered 22 through 24 and those numbered 56 through 66). The

R2 value was 0.941, indicating that the model could explain 94.1% of the Brix value

variation.
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Figure 4.9 Graphs of measured and predicted Brix values when using SVR
with an RBF kernel

4.2.3.4 Use SVR with RBF kernel to predict pH values

Table 4.11 displays the prediction errors of pH values using an RBF-

kernel SVR. The average absolute error of all classes was 0.0860, indicating rather low
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errors. However, the error of class 0 was relatively high, suggesting that enhancements

in its prediction are necessary.

Table 4.11 pH prediction errors when using SVR with an RBF kernel

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

ﬁr‘r’;f'“te 0.1468 | 0.0666 | 0.0565 | 0.0786 | 0.0722 | 0.0736 | 0.1084 | 0.0860

Standard

Seviation 0.0601 | 0.0410 | 0.0422 | 0.0579 | 0.0525| 0.0630 | 0.0157 | 0.0635

Srffr“"e 0.0362 | 00154 | 00126 | 00171 | 00150 | 0.0147 | 00147 | 0.0188

Standard

Seviation 0.0156 | 0.0095 | 0.0094 | 0.0127 | 0.0107 | 0.0126 | 0.0157 | 0.0142

Eﬁfre”‘age 3.6177 | 15359 | 1.2572 | 1.7068 | 1.4963 | 1.4730 | 2.0091 | 1.8798

Standard

Seviation 1.5593 | 0.9539 | 0.9377 | 1.2695 | 1.0665 | 1.2604 | 1.5677 | 1.4209

The results of predicting banana pH using SVR with a radial basis
kernel were displayed in Figure 4.10. The overall error was low, although there were
some deviations between the predicted and measured values at certain data points (such
as the values numbered 2, 9, 74, and 76). The R? value is 0.926, indicating that the SVR
polynomial kernel model can explain approximately 92.6% of pH variation.
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Figure 4.10 Graphs of measured and predicted pH values when using SVR

with a radial kernel
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4.2.3.5 Use SVR with a Linear Kernel to Predict Brix values

Table 4.12 shows the prediction error of Brix values using the SVR
with a linear kernel. The prediction of Brix values when using SVR linear regression
performed quite well in some classes (such as class 0), with small errors. However, the
error in Class 2 was significantly high. The absolute error of all classes was 0.8413.
The relative and percentage errors of all classes were 0.0741 and 7.4115, respectively.

Table 4.12 Brix prediction errors when using SVR with a linear kernel

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

Q?gf'“te 0.2048 | 0.7045 | 1.9172 | 0.7372 | 0.7206 | 1.0420 | 0.5764 | 0.8413

Standard

Seviation 0.1504 | 0.9971 | 2.6583 | 0.7181 | 0.7551| 0.7408 | 0.0209 | 1.2683

Erfgar“"e 0.0573 | 01082 | 01940 | 00426 | 00339 | 0.0475| 0.0475| 0.0741

Standard

e 0.0348 | 0.1016 | 0.2864 | 0.0435 | 0.0344 | 0.0341 | 0.0209 | 0.1291

Ererff”‘age 5.7268 | 10.8177 | 19.4040 | 4.2605 | 3.3936 | 4.7455 | 3.0144 | 7.4115

33?:3[31 3.4774 | 10,1582 | 28.6419 | 4.3479 | 3.4441 | 3.4099 | 2.0945 | 12.9137

Figure 4.11 shows the comparison of measured and predicted Brix
values for bananas using the SVR with a linear kernel. The R? value was 0.952, which
was higher than using the polynomial kernel and the RBF kernel. The measured values
(green dots) and predicted values (blue dots) were close to each other but had high errors

in some areas, especially around banana samples 22-24.
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Measured and predicted Brix values
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Figure 4.11 Graphs of measured and predicted Brix values when using SVR

with a linear kernel

4.2.3.6 Use SVR with a Linear Regression to Predict pH Values

Table 4.13 shows the prediction error for pH values using the SVR

with a linear kernel. The overall absolute error of the SVR for pH value was 0.0891.

The relative and percentage errors were 0.0195 and 1.9490, respectively.

Table 4.13 pH prediction errors when using SVR with a linear kernel

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

ﬁr‘r’gf"“te 0.1480 | 0.0623 | 0.0571 | 0.0984 | 0.0725| 0.0778 | 0.1063 | 0.0891

Standard

Seviation 0.0690 | 0.0405 | 0.0428 | 0.0600 | 0.0522 | 0.0614 | 0.0147 | 0.0642

Erf:)ar“"e 0.0365 | 0.0143 | 0.0127 | 0.0214 | 0.0150 | 0.0155 | 0.0155 | 0.0195

Standard

Seviation 0.0179 | 0.0093 | 0.0095 | 0.0133 | 0.0106 | 0.0123 | 0.0147 | 0.0146

Eﬁfre”tage 3.6516 | 1.4328 | 1.2702 | 21401 | 15016 | 1.5529 | 1.9776 | 1.9490

Standard

Seviation 1.7907 | 0.9320 | 0.9522 | 1.3282 | 1.0587 | 1.2282 | 1.4682 | 1.4573

The results of using SVR with a linear kernel to predict the pH values from the

softmax values are displayed in Figure 4.12, where the horizontal axis displays the
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banana sample numbers and the vertical axis displays the pH values. The red diamonds
represented the measured values, and the blue dots represented the predicted values. The

R? value was 0.922, which is lower than the RBF kernel.

Measured and predicted pH values

& Measured values =@~ Predicted values

1 3 57 9111315171921 232527 2931 33353739 41 43 4547 4951 53 55 5T 50 61 63 65 6769 71 73 75 77 19 81

Banana no.

Figure 4.12. Graphs of measured and predicted pH values when using SVR

with a linear kernel

4.2.4 Use KNN to Predict Brix and pH Values

In this section, the KNN algorithm was used to predict the Brix and pH values

of bananas from the seven softmax features.

4.2.4.1 Use KNN (k=3) to Predict Brix Values

Table 4.14 summarizes the Brix value prediction errors for KNN with
k=3, with an overall percentage error of 3.4084%, reflecting reliable performance. Most
classes, especially Class 4, exhibit high accuracy with minimal percentage errors (as
low as 0.9372%) and consistent predicted, as indicated by small standard deviations in

absolute and percentage errors.
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class 0 class 1 class 2 class 3 class 4 class 5 class 6 clglsles
pbsollte | 00850 | 0.2040 | 1.1263 | 0.4431 | 0.1958 | 0.3756 | 0.3036 | 0.3938
Stendard 10,0645 | 0.1876 | 1.7052 | 0.4496 | 0.3692 | 0.4362 | 0.0138 | 0.7728
Relative | 00252 | 0.0342 | 0.1068 | 0.0258 | 0.0094 | 0.0168 | 0.0168 | 0.0341
Stendard 10,0200 | 0.0257 | 0.1540 | 0.0277 | 0.0175 | 0.0196 | 0.0138 | 0.0683
POOONta0e | 25161 | 3.4183 | 10.678 | 2.5805 | 0.9372 | 1.6804 | 1.5880 | 3.4084
standard | 19986 | 2.5655 | 15.396 | 2.7660 | 1.7505 | 1.9562 | 1.3826 | 6.8306

Figure 4.13 shows the prediction of the Brix values from banana

images using the KNN (k=3), where green dots represented the measured values and

blue dots represented the predicted values. The trend of the two curves was basically

consistent. The R? value of the model was 0.984, indicating a high correlation between

the measured and predicted values. This revealed that the KNN (k=3) predictor

exhibited high accuracy in predicting Brix values with small errors.

5 r

Brix values

Measured and predicted Brix values
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Figure 4.13 Graphs of measured and predicted Brix values when using KNN (k=3)
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4.2.4.2 Use KNN (k=3) to Predict pH Values

Table 4.15 shows the error in predicting pH values using KNN (k=3).
The prediction error at class 0 was highest. The absolute, relative, and percentage errors
of all classes were 0.0335, 0.0072, and 0.721, respectively. Overall, the model performs

the best in predicting pH values using the softmax values.

Table 4.15 pH prediction errors when using KNN (k=3)

classO | classl | class2 | class3 | class4 | class5 | class6 clapglsles
posolute 10,0385 | 0.0173 | 0.0277 | 0.0445 | 0.0286 | 0.0256 | 0.0519 | 0.0335
standard 10,0355 | 0.0231 | 0.0264 | 0.0515 | 0.0414 | 0.0265 | 0.0102 | 0.0393
Relative | 0.0096 | 0.0040 | 0.0061 | 0.0098 | 0.0058 | 0.0051 | 0.0051 | 0.0072
Sandard | 0.0091 | 0.0052 | 0.0057 | 0.0115 | 0.0084 | 0.0053 | 0.0102 | 0.0084
Percentage | 0.9576 | 0.3958 | 0.6106 | 0.9789 | 0.5845 | 0.5111 | 0.9637 | 0.7217
sandard 1 0.9082 | 05232 | 05691 | 1.1549 | 0.8419 | 05302 | 1.0172 | 0.8383

The graphs in Figure 4.14 show the measured and predicted values
when using the KNN (k=3) to predict the pH values of bananas. The R? value of the
model was 0.972, which was higher than the R? values of SVR and linear regression.
This indicated that the KNN (k=3) performed better than SVR and linear regression in

predicting pH values, with the errors smaller than SVR and linear regression.
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Figure 4.14 Graphs of measured and predicted pH values when using KNN (k=3)
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4.2.5 Summarize the R? results of Brix Values using Different Methods

when using Softmax Values

Table 4.16 compares the predictive performance of different models for Brix

values using softmax features. Linear regression showed an R? value of 0.958. SVR

models demonstrated varying performance, with the linear kernel performing best (R2 =
0.952), followed by the radial basis kernel (R? = 0.941) and the polynomial kernel (R?

=0.925). KNN had the highest predictive accuracy, with k=3 achieving the best R? value
of 0.984, followed by k=5 (R? = 0.966) and k=7 (R? = 0.952). KNN outperformed other

methods overall.

Table 4.16 R? results when using different methods to predict Brix values

Features Methods R?
Softmax values Linear regression 0.958
Softmax values SVR (linear) 0.952
Softmax values SVR (polynomial) 0.925
Softmax values SVR (radial basis function) 0.941
Softmax values KNN (k=3) 0.984
Softmax values KNN (k=5) 0.966
Softmax values KNN (k=7) 0.952

When predicting pH values using different methods, Table 4.17 shows the R2

values. It also compares how well different models did with the softmax features. KNN
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showed the best performance, with R? values of 0.972 (k=3), 0.9412 (k=5), and 0.921
(k=7). Linear regression ranked second, with an R2 value of 0.925. Among SVR models,
the radial basis kernel performed best (R2= 0.926), slightly surpassing linear regression,
while the linear and polynomial kernels achieved R2 values of 0.921 and 0.914,
respectively. Overall, KNN demonstrated the highest accuracy, making it the most

effective model for predicting pH values.

Table 4.17 R?results when using different methods to predict pH values

Features Methods R?
Softmax values Linear regression 0.925
Softmax values SVR (linear) 0.922
Softmax values SVR (polynomial) 0.914
Softmax values SVR (radial basis function) 0.926
Softmax values KNN (k=3) 0.972
Softmax values KNN (k=5) 0.941
Softmax values KNN (k=7) 0.921

4.3 Predicting the Internal Properties of Bananas using RGB and

L*a*b* Color VValues Measured from One Point

This section further examined the relationships between the RGB and L*a*b*
color values of bananas and their Brix and pH measurements. RGB and L*a*b* color
values served as feature variables to predict Brix and pH values utilizing linear
regression, SVR, and KNN models. The Brix and pH values were measured for 12, 11,
13, 11, 13, 10, and 10 bananas of class 0 to class 6, respectively, for the Brix and pH
prediction.

4.3.1 Comparison of Different Methods for Predicting Brix Values Using
RGB Color Features

Table 4.18 compares the R? squared values of different methods for predicting
Brix values using RGB color features. Among these methods, KNN (k=3) had the

highest R2 value (0.943), indicating that its predictive performance was superior to other
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methods. Linear regression and SVR (linear kernel) also showed relatively good
performance, with R2 values of 0.853 and 0.778, respectively. In contrast, the prediction
accuracy of SVR (polynomial kernel) and SVR (radial basis kernel) were lower, with

R2 values of 0.475 and 0.585, respectively.
Based on these results, subsequent analysis will focus on errors related to linear
regression, SVR (linear kernel), and KNN (k=3), as well as their corresponding

measurements and predictions of Brix values.

Table 4.18 R2 values of different methods for predicting Brix values using RGB color

features
Features Methods R?
RGB values Linear regression 0.853
RGB values SVR (linear) 0.778
RGB values SVR (polynomial) 0.475
RGB values SVR (radial basis function) | 0.585
RGB values KNN (k=3) 0.943
RGB values KNN (k=5) 0.892
RGB values KNN (k=7) 0.826

4.3.1.1 Use Linear Regression to Predict Brix Based on RGB Values

The equation to predict Brix values derived from the linear regression

analysis was as follows:

PredictedBrixvalue=(R*0.422)+(G*-0.425)+(B*0.002)+6.542 (4-3)

Table 4.19 shows the errors in predicting Brix value from RGB color
values using the linear regression method. The absolute error, standard deviation,
relative error, and percentage error for each banana class were reported. The overall
absolute error, relative error, and percentage error were 2.1130, 0.2412, and 24.121,

respectively. The percentage errors were relatively high in class 0 and class 1.
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Table 4.19 Errors when using linear regression to predict Brix values from RGB color

values

classO | class1l | class2 | class3 | class4 | class5 | class6 clglsles
pbsolute | 16610 | 25439 | 3.1418 | 24058 | 1.2216 | 16570 | 2.1353 | 2.1130
sandard | 18442 | 22830 | 15834 | 1.3231 | 0.9690 | 1.4066 | 0.0836 | 1.6720
Relaive | 04859 | 05225 | 0.2787 | 0.1431 | 0.0588 | 0.0736 | 0.0736 | 0.2412
standard | 05330 | 0.4885 | 0.1768 | 0.0862 | 0.0452 | 0.0593 | 0.0836 | 0.3309
Percentage | 48588 | 52.245 | 27.867 | 14314 | 5.8755 | 7.3641 | 10.880 | 24.121
sandard | 53304 | 48.851 | 17.684 | 8.6217 | 4.5204 | 5.9324 | 8.3595 | 33.093

Figure 4.15 shows the comparison between the measured Brix values

(green dots) of banana samples and the Brix values predicted using a linear regression

model (blue dots). The figure reveals significant fluctuations in the predicted values,

highlighting the limitations of the linear regression model's prediction capabilities.

Brix values
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Figure 4.15 Graphs of measured and predicted Brix values when using

linear regression
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4.3.1.2 Use SVR (linear kernel) to Predict Brix Based on RGB Values

The errors of using SVR (linear kernel) to predict Brix values from
RGB color values were displayed in Table 4.20. The overall absolute error, relative
error, and percentage error were 2.5509, 0.3871, and 38.713, respectively. The high
average percentage error indicated significant errors in the prediction. Its performance

was inferior to that of alternative approaches such as KNN.

Table 4.20 Errors when using SVR (linear kernel) to predict Brix values from RGB

color values
class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

pbsolte | 42031 | 4.4611 | 2.3536 | 1.6375 | 0.7566 | 2.1883 | 25501 | 2.5509

3;3?:32‘:‘ 1.3982 | 2.5289 | 1.9818 | 1.0046 | 0.7665 | 1.2388 | 0.1136 | 2.0545

Relative

o 1.2137 | 0.8876 | 0.2287 | 0.0945 | 0.0358 | 0.1001 | 0.1001 | 0.3871

Senderd | 0.3598 | 0.5614 | 0.2541 | 0.0621 | 0.0353 | 0.0530 | 0.1136 | 05138

Peroentage | 121.36 | 88.762 | 22.868 | 9.4521 | 3.5816 | 10,007 | 13.040 | 38.713

sandad | 35984 | 56135 | 25412 | 6.2055 | 35323 | 53034 | 11.357 | 51.384

The predicted Brix values from the SVR (linear kernel) model were
very different from the measured Brix values in a number of ranges, as shown in Figure
4.16. These ranges included the bananas numbered 1-22 and 74-77.
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Figure 4.16 Graphs of measured and predicted Brix values when using SVR

(linear kernel)

4.3.1.3 Use KNN (k=3) to Predict Brix Based on RGB Values

Table 4.21 shows the error of using the KNN (k=3) model to predict

Brix values based on RGB color values. The overall absolute error was 1.1894, and the

standard deviation was 1.1661, indicating that the model has a small prediction error.

The KNN (k=3) model exhibited lower prediction errors in all categories, and its

performance was superior to the linear regression and SVR methods.

Table 4.21 Errors when using KNN (k=3) to predict Brix values from RGB color values

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All
classes
QE;?'”‘e 0.4506 | 2.0133 | 1.4731 | 1.1236 | 0.9544 | 1.2959 | 1.1246 | 1.1894
3;@?:3{)‘:] 0.7006 | 1.5123 | 1.5051 | 0.4744 | 0.5942 | 1.2873 | 0.0727 | 1.1661
Relative
o 0.1280 | 0.3707 | 0.1400 | 0.0644 | 0.0459 | 0.0579 | 0.0579 | 0.1229
sendad | 0.2002 | 03105 | 0.1709 | 0.0284 | 0.0280 | 0.0579 | 0.0727 | 0.1849
Peroentage | 12801 | 37.070 | 13.997 | 6.4431 | 4.5857 | 5.7919 | 5.8363 | 12.290
sendard | 20016 | 31.045 | 17.088 | 2.8419 | 2.8044 | 57920 | 7.2668 | 18.486
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Figure 4.17 shows the comparison between the predicted Brix value
and the measured value of the KNN (k=3) model. The graphs revealed a relatively high

degree of matching between the predicted and measured values.
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Figure 4.17 Graphs of measured and predicted Brix values when using KNN (k=3)

4.3.2 Comparison of Different Methods for Predicting pH Values Using
RGB Color Values Measured from One Point

Table 4.22 compares the R? values of different methods for predicting pH
values using RGB color values measured from one point. Among linear regression, SVR,
and KNN, KNN (k=3) achieved the highest R? value (0.896), demonstrating its superior
pH predictive performance compared to other methods. SVR (radial basis kernel) and
KNN (k=5) also showed relatively high performance, with R? values of 0.829 and 0.823,
respectively. Linear regression and SVR (linear kernel) had moderate performance, with
R2 values of 0.761 and 0.750, respectively. In contrast, the prediction accuracies of SVR
(polynomial kernel) and KNN (k=7) were lower, with R? values of 0.571 and 0.706,

respectively.

Based on these results, subsequent analysis will focus on the prediction errors
related to linear regression, KNN (k=3), and SVR (radial basis function kernel).
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Table 4.22 R2 Values of Different Methods for Predicting pH Values Using RGB

Color Values from One Point

Features Methods R?
RGB values Linear regression 0.761
RGB values SVR (linear) 0.750
RGB values SVR (polynomial) 0.571
RGB values SVR (radial basis function) | 0.829
RGB values KNN (k=3) 0.896
RGB values KNN (k=5) 0.823
RGB values KNN (k=7) 0.706

4.3.2.1 Use Linear Regression to Predict pH Based on RGB Values

Measured from One Point

The equation to predict a pH value derived from the linear regression

was as follows:
pH value=(R*0.021)+(G*-0.029)+(B*0.004)+5.166

(4-4)

Table 4.23 shows the errors when using linear regression to predict

pH values from RGB color features. The overall absolute error across all classes was

0.158, with the lowest absolute error for class 1 (0.0954) and the highest for class 0

(0.2705). Overall, the prediction accuracy of linear regression was moderate.

Table 4.23 Errors when using linear regression to predict pH values from RGB color

values measured from one point

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All
classes
pbsoldte | 02705 | 0.0954 | 0.1344 | 0.1568 | 0.0977 | 0.1444 | 0.2127 | 0.1580
Sendard | 0.1537 | 0.0760 | 0.0823 | 0.1577 | 0.0708 | 0.0577 | 0.0290 | 0.1282
Relative
0.0677 | 0.0221 | 0.0297 | 0.0345 | 0.0206 | 0.0292 | 0.0292 | 0.0348

error
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Table 4.23 Errors when using linear regression to predict pH values from RGB color

values measured from one point (continued)

All

class 0 class 1 class 2 class 3 class 4 class 5 class 6
classes

sandard 10,0395 | 0.0178 | 0.0181 | 0.0351 | 0.0151 | 0.0121 | 0.0290 | 0.0294

Percentage

error 6.7682 | 2.2057 | 2.9730 | 3.4511 | 2.0625 | 2.9164 | 3.9333 | 3.4802

sandard | 39517 | 1.7828 | 1.8050 | 3.5064 | 15066 | 1.2066 | 2.8966 | 2.9405

The graphs of measured and predicted pH values based on RGB color
values when employing linear regression were displayed in Figure 4.18. The R? value
was 0.761, indicating that the predicted pH values were rather different from those that
were measured.

Measured values and predicted pH values
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Figure 4.18 Graphs of measured and predicted pH values from RGB color

values when using linear regression

4.3.2.2 Use SVR (Radial Basis Kernel) to Predict pH Based on RGB
Values Measured from One Point

Table 4.24 summarizes the errors when using SVR with an radial basis
kernel to predict pH values. The overall absolute error was 0.1237, which was lower
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compared to that of linear regression. Class 2 had the lowest absolute error (0.0850)
among all classes, while class 0 had a slightly higher error (0.1711). The results
suggested that the SVR (radial basis kernel) provided a better prediction than the linear

regression.

Table 4.24 Errors when using SVR (radial basis kernel) to predict pH values from

RGB color values

classO | class1 | class2 | class 3 | class4 | class5 | class 6 All

classes

ﬁr?g‘r)'”te 0.1711 | 0.1131 | 0.0850 | 0.1208 | 0.0738 | 0.1349 | 0.1832 | 0.1237

Standard 1 15,4 | 0.0754 | 0.0574 | 0.0941 | 0.0512 | 0.0992 | 0.0294 | 0.1032
deviation

eRr‘?Lar“VG 0.0426 | 0.0260 | 0.0188 | 0.0265 | 0.0152 | 0.0270 | 0.0270 | 0.0268

Standard |y )316 1 00176 | 0.0125 | 0.0210 | 0.0101 | 0.0198 | 0.0294 | 0.0223
deviation

Eﬁffntage 4.2583 | 2.6035 | 1.8837 | 2.6491 | 1.5225 | 2.6989 | 3.3854 | 2.6840

Standard | 5 15041 1 7566 | 1.2543 | 2.1035 | 1.0109 | 1.9773 | 2.9429 | 2.2292
deviation

Figure 4.19 shows measured and predicted pH values based on RGB
color values when using the SVR (radial basis kernel). The R? value was 0.829, better

than the linear regression performance.
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Measured values and predicted pH values
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Figure 4.19 Graphs of measured and predicted pH values when using SVR
(radial basis kernel)

4.3.2.3 Use KNN (k=3) to Predict pH Based on RGB Values
Measured from One Point

Table 4.25 presents the errors when using KNN (k=3) to predict pH
values. The overall absolute error was the lowest among the three methods at 0.0885,
with a standard deviation of 0.0895. This method significantly outperformed both linear
regression and SVR (radial basis kernel). This demonstrated that KNN (k=3) was the

most accurate method for predicting pH values based on RGB color values measured

from one point.

Table 4.25 Errors when using KNN (k=3) to predict pH values from RGB color values
measured from one point

classO | class1 | class2 | class3 | class4 | class5 | class 6 All

classes

'e“rtr’gf'”te 0.0964 | 0.1424 | 0.0489 | 0.0715 | 0.0733 | 0.0978 | 0.1008 | 0.0885

Star)da_lrd 0.1020 | 0.0902 | 0.0371 | 0.0502 | 0.0973 | 0.0715 | 0.0249 | 0.0895
deviation
Relative

0.0243 | 0.0329 | 0.0108 | 0.0156 | 0.0150 | 0.0196 | 0.0196 | 0.0193

error
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Table 4.25 Errors when using KNN (k=3) to predict pH values from RGB color values
measured from one point (continued)

classO | class1 | class2 | class3 | class4 | class5 | class 6 All
classes
Standard 0.0261 | 0.0214 | 0.0082 | 0.0109 | 0.0194 | 0.0143 | 0.0249 | 0.0193
deviation
Zfrff”tage 24291 | 3.2895 | 1.0827 | 1.5561 | 1.5018 | 1.9589 | 1.8449 | 1.9270
Standard 2.6076 | 2.1371 | 0.8174 | 1.0893 | 1.9385 | 1.4269 | 2.4886 | 1.9337
deviation

pH values

Figure 4.20 shows measured and predicted pH values based on RGB
color values when using KNN (k=3). The R? value was 0.896, better than linear
regression and SVR performance. Overall, the predicted values and measured values

were very similar, although there were some small errors.

Measured values and predicted pH values
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Figure 4.20 Graphs of measured and predicted pH values when using KNN (k=3)
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4.3.3 Comparison of Different Methods for Predicting Brix Values Using

L*a*b* Color Values Measured from One Point

Table 4.26 compares the R? values of different methods for predicting Brix
values using L*a*b* color features. Among these methods, KNN (k=3) achieved the
highest R? value (0.941), demonstrating its superior predictive performance compared
to other methods. KNN (k=5) and KNN (k=7) also showed relatively good performance,
with R2 values of 0.864 and 0.844, respectively. SVR (radial basis function) performed
moderately well, achieving an R2 value of 0.775. In contrast, the performance of linear
regression and SVR (linear kernel) was lower, with R? values of 0.668 and 0.641,
respectively. SVR (polynomial kernel) showed the lowest prediction performance, with
an R? value of 0.461.

Based on these results, subsequent analysis will focus on errors related to
linear regression, KNN (k=3), and SVR (radial basis kernel).

Table.4.26 R2 values of different methods for predicting Brix values using L*a*b*

color values measured from one point

Features Methods R?
L*a*b* values Linear regression 0.668
L*a*b* values SVR (linear) 0.641
L*a*b* values SVR (polynomial) 0.461
L*a*b* values SVR (radial basis function) 0.775
L*a*b* values KNN (k=3) 0.941
L*a*b* values KNN (k=5) 0.864
L*a*b* values KNN (k=7) 0.844

4.3.3.1 Use Linear Regression to Predict Brix Based on L*a*b* Values

The equation to predict a Brix value derived from the application of

linear regression was as follows:
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Brix value=(L*0.112)+(a*0.84)+(b*0.16)+2.038 (4-5)

Table 4.27 shows the error of linear regression in predicting the Brix
values of different banana classes. The average absolute error for all categories was
3.3178, with a standard deviation of 3.0969, indicating relatively high variability. The
very high relative error of 0.3676 and the percentage errors of 36.764 indicated the poor

performance of the linear regression in predicting Brix values.

Table 4.27 Errors when using linear regression to predict Brix values from L*a*b*

color values measured from one point

classO | class1 | class2 | class3 | class4 | class5 | class6 All
classes
pbsolite | 38610 | 1.5588 | 27171 | 3.3790 | 3.2013 | 4.2360 | 4.5675 | 3.3178
sendard | 6.5831 | 1.5934 | 15155 | 21011 | 14735 | 1.9026 | 0.1246 | 3.0969
Relative
orvor 1.2004 | 0.3181 | 0.2344 | 0.2003 | 0.1569 | 0.1902 | 0.1902 | 0.3676
standard 1> 0683 | 0.3408 | 0.1261 | 0.1323 | 0.0693 | 0.0809 | 0.1246 | 0.8629
Percentage | 120.03 | 31810 | 23444 | 20032 | 15690 | 19.017 | 23.391 | 36.764
Standard
| 206.83 | 34.080 | 12.607 | 13.228 | 6.9271 | 8.0946 | 12.456 | 86.286

Figure 4.21 shows the comparison between the predicted Brix values
and the measured values of the linear regression model. The graphs showed a relatively
low degree of matching between predicted and measured values, with an R? value of
0.668.
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Figure 4.21 Graphs of measured and predicted Brix values when using

linear regression

4.3.3.2 Use SVR (radial basis kernel) to Predict Brix Based on L*a*b*
Values

Table 4.28 shows that compared to linear regression, SVR with an
RBF kernel exhibited a lower overall error but still had a high absolute error in certain
classes, like class 0 (4.5763) and class 1 (2.8650).

Table 4.28 Errors when using SVR(rbf kernel) to predict Brix values from L*a*b*

color values measured from one point

classO | class1 | class2 | class3 | class4 | class5 | class6 All
classes
pbsolte | 45763 | 2.8650 | 1.7674 | 1.4482 | 0.7751 | 1.8000 | 0.9705 | 2.0306
sendard | 50583 | 2.4167 | 14167 | 1.3364 | 0.8492 | 1.2283 | 0.0460 | 2.6004
Relative
orror 1.3858 | 0.5763 | 0.1413 | 0.0852 | 0.0359 | 0.0802 | 0.0802 | 0.3432
sendad | 1.6049 | 05221 | 0.1098 | 0.0814 | 0.0379 | 0.0516 | 0.0460 | 0.7878
Peroentage | 138,57 | 57.630 | 14.130 | 8.5157 | 3.5874 | 8.0212 | 4.9617 | 34.319
sendard | 160.48 | 52.213 | 10.982 | 8.1396 | 3.7896 | 5.1634 | 4.6015 | 78.784
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Figure 4.22 shows the comparison between the predicted Brix value
and the measured value of the SVR (radial basis kernel) model. The degree of matching
between the predicted and measured values was higher than in linear regression, with
an R-squared of 0.775 compared to an R? of 0.668. The predicted and measured values

exhibit significant errors prior to reaching the bananas numbered 45.

Measured and predicted Brix values

Measured values —a— Predicted values
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Figure 4.22 Graphs of measured and predicted Brix values when using SVR

(radial basis kernel)

4.3.3.3 Use KNN (k=3) to Predict Brix Based on L*a*b* Values

Table 4.29 shows the error in predicting Brix values from L*a*b*
values using KNN (k=3). KNN (k=3) achieved the lowest error and best performance
among all methods. The average absolute error for all categories was 1.2296, with a
standard deviation of 1.1671, reflecting low error variability. The relative error and
percentage error were 0.1416 and 14.163, respectively.
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Table 4.29 Errors when using KNN (k=3) to predict Brix values from L*a*b* color

values measured from one point

classO | class1 | class2 | class3 | class4 | class5 | class6 All

classes
pbsolute | 12806 | 1.2909 | 16117 | 1.2569 | 0.7979 | 1.8222 | 0.6346 | 1.2296
Sandard 119671 | 0.9795 | 1.0726 | 0.6358 | 0.7063 | 15184 | 0.0287 | 1.1671
Relaive | 03845 | 0.2306 | 0.1377 | 0.0726 | 0.0380 | 0.0843 | 0.0843 | 0.1416
standard 106188 | 0.1608 | 0.0892 | 0.0376 | 0.0326 | 0.0740 | 0.0287 | 0.2705
Percentage | 38.445 | 23.060 | 13.766 | 7.2550 | 3.8031 | 8.4304 | 3.3244 | 14.163
Standard 1 61.880 | 16.077 | 8.9191 | 3.7604 | 3.2587 | 7.3979 | 2.8730 | 27.054

Figure 4.23 shows the comparison between the predicted Brix values

and the measured values when using KNN (k=3) and L*a*b* values. The graphs showed

that the degree of matching between predicted and measured values was higher than that

of linear regression and SVR, but there were significant deviations in data numbered 2,

3, and 68.

5 r
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Figure 4.23 Graphs of measured and predicted Brix values when using KNN (k=3)
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4.3.4 Comparison of Different Methods for Predicting pH Values Using

L*a*b* Color Values

Table 4.30 compares the R? values of different methods of predicting pH values

using L*a*b* color features. Among these methods, KNN (k=3) achieved the highest R?

value (0.844), demonstrating its superior predictive performance compared to other

methods. In contrast, linear regression, SVR (linear kernel), and SVR (polynomial kernel)

showed lower performance, with R2 values of 0.529, 0.495, and 0.482, respectively.

Based on these results, subsequent analysis will focus on errors related to KNN

(k=3), SVR (radial basis kernel), and linear regression, as they provided a range of

performance levels suitable for understanding predictive performance.

Table 4.30 R2 values of different methods for predicting pH Values Using L*a*b*

color values measured from one point

Features Methods R?
L*a*b* values Linear regression 0.529
L*a*b* values SVR (linear) 0.495
L*a*b* values SVR (polynomial) 0.482
L*a*b* values SVR (radial basis function) 0.819
L*a*b* values KNN (k=3) 0.844
L*a*b* values KNN (k=5) 0.754
L*a*b* values KNN (k=7) 0.667

was as follows:

pH value = (R*-0.007)+(G*0.041)+(B*-0.001)+5.154

4.3.4.1 Use Linear Regression to Predict pH Based on L*a*b* Values

The equation to predict pH values derived from the linear regression

(4-6)

Table 4.31 shows the errors in predicting pH values based on L*a*b*

color values using linear regression. The average absolute error of all banana classes

was 0.1564, with the lowest error found in class 4 (0.0565) and the highest error found
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in class 6 (0.2520). This indicated that it was difficult to accurately predict using the

linear regression.

Table 4.31 Errors when using linear regression to predict pH values from L*a*b*

color values measured from one point

classO | classl | class2 | class3 | class4 | class5 | class6 Al
classes
fosolute 10,3913 | 0.0671 | 0.0855 | 0.1090 | 0.0565 | 0.1529 | 0.2520 | 0.1564
Sendard | 0.4455 | 0.0656 | 0.0639 | 0.0808 | 0.0462 | 0.1010 | 0.0389 | 0.2234
Relative
orver 0.0996 | 0.0155 | 0.0190 | 0.0239 | 0.0116 | 0.0304 | 0.0304 | 0.0349
sandard | 01158 | 0.0154 | 0.0142 | 0.0183 | 0.0092 | 0.0199 | 0.0389 | 0.0553
Pooeniage | 99503 | 1.5525 | 1.8954 | 2.3005 | 11643 | 3.0419 | 4.6452 | 3.4922
sendard | 115783 | 15447 | 1.4227 | 1.8256 | 09158 | 19855 | 3.8927 | 5.5278

Figure 4.24 illustrates the measured and predicted pH values, derived

from L*a*b* color values, through the use of linear regression. The R? value was 0.529.

The graphs clearly showed significant errors between the predicted and measured values

for the bananas numbered 1-6 and 74-79.

pH values

Measured values and predicted pH values

&— Measured Values

=&~ Predicted Values

1 35 79 111315171921 232527293133 35373041 43454749 515355575961 636567697173 7577 7981
Banana no.

Figure 4.24 Graphs of measured and predicted pH values from L*a*b* color values

when using linear regression
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4.3.4.2 Use SVR (radial basis kernel) to Predict pH Based on L*a*b*

Values

Table 4.32 shows the error in predicting pH values based on L*a*b*

color values using SVR (radial basis kernel). Compared with linear regression, SVR

with an RBF kernel achieved better prediction accuracy. The average absolute error for

all banana classes was 0.1071, with the lowest error found in class 4 (0.0541) and the

highest error found in class 0 (0.1942). The standard deviation of absolute errors was

0.1265, indicating that the prediction was more consistent compared to the linear

regression.

Table 4.32 Errors when using SVR (radial basis kernel) to predict pH values from

L*a*b* color values measured from one point

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

phsolute | 0.1942 | 0.0796 | 0.0715 | 0.1054 | 0.0541 | 0.1503 | 0.1080 | 0.1071

Standard

deviation 0.2552 | 0.0529 0.0596 | 0.0902 | 0.0511 | 0.1203 | 0.0157 | 0.1265

eRrerLar“"e 0.0495 | 0.0183 | 00158 | 0.0231 | 0.0113 | 0.0296 | 0.0296 | 0.0237

Standard | 6eps” | 00124 | 00131 | 0.0204 | 0.0106 | 00230 | 0.0157 | 0.0311

deviation

zrergcf”tage 4.9454 | 1.8304 | 15837 | 2.3102 | 11272 | 2.9642 | 2.0033 | 2.3735

Standard | ¢ se19 | 19427 | 13150 | 2.0397 | 1.0633 | 22999 | 1.5718 | 3.1129

deviation

Figure 4.25 illustrates the measured and predicted pH values, derived

from L*a*b* color values, through the use of the SVR (radial basis kernel). The R? value

was 0.819, which was higher than linear regression.
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Figure 4.25 Graphs of measured and predicted pH values when using SVR
(radial basis kernel)

performance was quite consistent among all banana classes.

4.3.4.3 Use KNN (k=3) to Predict pH Based on L*a*b* Values
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Table 4.33 shows the error in predicting pH values based on L*a*b*
color values using KNN (k=3). The KNN (k=3) exhibited the best overall performance
among the three methods. The average absolute error for all classes was 0.1011, with
class 2 having the lowest error (0.0511) and class 5 having the highest error (0.2159).
The standard deviation of absolute error was 0.1156, indicating that the prediction

Table 4.33 Errors when using KNN (k=3) to predict pH values from L*a*b* color
values measured from one point

classO | class1 | class2 | class3 | class4 | class5 | class 6 All
classes
Q?;f'“te 0.1664 | 0.0691 | 0.0511 | 0.0641 | 0.0736 | 0.2159 | 0.0988 | 0.1011
Standard | 1007 | 00448 | 0.0423 | 0.0847 | 0.0573 | 0.1869 | 0.0162 | 0.1156
deviation
Eﬁ:ﬁ“"e 0.0420 | 0.0158 | 0.0113 | 0.0142 | 0.0153 | 0.0425 | 0.0425 | 0.0220
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Table 4.33 Errors when using KNN (k=3) to predict pH values from L*a*b* color
values measured from one point (continued)

classO | class1 | class2 | class3 | class4 | class5 | class 6 All
classes
Standard | 5/35 | 00103 | 0.0093 | 0.0191 | 0.0118 | 0.0354 | 0.0162 | 0.0259
deviation
Zfrff”tage 42024 | 15849 | 1.1336 | 1.4157 | 1.5261 | 4.2528 | 1.8219 | 2.2025
Standard |, 3193 | 10055 | 0.9345 | 1.9113 | 1.1799 | 3.5422 | 1.6234 | 2.5881
deviation

pH values

Figure 4.26 shows the measured and predicted pH values obtained
from L*a*b* color values using KNN (k=3). The R? value was 0.844, which was higher
than SVR and linear regression but lower than using RGB to predict pH value. The
graphs showed a high degree of matching between the predicted values and the

measured values, with only the banana numbers 2, 3, and 78 showing significant errors.

Measured values and predicted pH values

&~ Measured Values —a— Predicted Values

Banana no.

1 357 9111315171921 232527293 335373941 24547495153 5557 5961 61656769 T1TIT57T77 7981

Figure 4.26 Graphs of measured and predicted pH values when using KNN (k=3)
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4.4 Predicting the Internal Properties of Bananas using RGB and

L*a*b* Color Values Measured from One Points

This section further examined the relationships between the RGB and L*a*b*
color values of bananas and their Brix and pH measurements. RGB and L*a*b* color
values served as feature variables to predict Brix and pH values utilizing linear
regression, SVR, and KNN. The Brix and pH values were measured for 12, 11, 13, 11,
13, 10, and 10 bananas of class 0 to class 6, respectively, for the Brix and pH prediction.

4.4.1 Comparison of Different Methods for Predicting Brix Values Using
RGB and L*a*b* Color Features

Table 4.34 compares the R2 values of different methods for predicting Brix
values using RGB and L*a*b* color features. Among the evaluated methods, KNN (k=3)
demonstrated the highest predictive performance, achieving an R? value of 0.947,
indicating its effectiveness in predicting Brix values. Linear regression and KNN (k=5)
showed R? values of 0.873 and 0.869, respectively. In contrast, the SVR models
exhibited varied performance. While SVR with a radial basis function kernel achieved
a moderate R? value of 0.739, SVR with a linear kernel performed similarly at 0.739.
SVR with a polynomial kernel, however, had the lowest predictive performance, with
an R2 value of 0.571.

Based on these results, subsequent analysis will focus on the prediction errors

related to KNN (k=3), linear regression, and SVR (radial basis function kernel).

Table 4.34 R2 values of different methods for predicting brix values using RGB and

L*a*b* color features

Features Methods R?
RGB and L*a*b* values Linear regression 0.873
RGB and L*a*b* values SVR (linear) 0.739
RGB and L*a*b* values SVR (polynomial) 0.571
RGB,L*a*b* values SVR (radial basis function) 0.739
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Table 4.34 R2 values of different methods for predicting brix values using RGB and

L*a*b* color features (continued)

Features Methods R2
RGB, L*a*b* values KNN (k=3) 0.947
RGB,L*a*b* values KNN (k=5) 0.869
RGB,L*a*b* values KNN (k=7) 0.847

4.4.1.1 Use Linear Regression to Predict Brix Values from RGB and

L*a*b* Color Values

The following equation is the result of applying linear regression to

predict Brix values:

PredictedBrixvalue=(R*0.362)+(G*-0.363)+(B*0.125)+(L*0.336)+

(a*0.155)+(b*0.285)+7.772 (4-7)

The Brix prediction using RGB and L*a*b* color values yielded an
R? of 0.873. Table 4.35 displays the prediction errors of the linear regression that
predicts Brix values based on RGB and L*a*h* color values. The absolute error, relative
error, percentage error, and their corresponding standard deviations were calculated
from Class 0 to Class 6. The absolute errors of the classes ranged from 1.2062 to 2.5345,
and the overall average absolute error of all classes was 2.0588, showing a certain gap

between the predicted and actual values.

Table 4.35 Errors when using linear regression to predict Brix values from RGB and

L*a*b* color values

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

pbsolute 1.8553 | 24430 | 24803 | 25345 | 12062 | 1.7287 | 2.1612 | 2.0588
Standard

deviation 1.0916 1.9878 1.3091 1.2969 0.9829 1.5366 0.0800 | 1.4351
Relative

error 0.5564 | 0.5001 | 0.2250 | 0.1503 | 0.0586 | 0.0767 | 0.0767 | 0.2423
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Table 4.35 Errors when using linear regression to predict Brix values from RGB and
L*a*b* color values (continued)

class 0 class 1 class 2 class 3 class 4 class 5 class 6 clglsles
Standard
Sevtation 0.3339 | 0.4282 | 0.1531 | 00817 | 0.0461 | 0.0651 | 0.0800 | 0.2847
Efrro‘f”tage 55.6365 | 50.0060 | 22.5026 | 15.0276 | 5.8625 | 7.6651 | 11.0390 | 24.2335
3;‘;‘/?;’3;‘:] 33.3913 | 42.8183 | 15.3111 | 8.1740 | 4.6074 | 6.5089 | 7.9959 | 28.4683

Figure 4.27 illustrates the outcomes of applying linear regression to
predict values based on RGB and L*a*b* color values. The obtained R? value of 0.873
indicated a certain relationship between measured and predicted values. Linear
regression can reflect the overall trend in predicting Brix values, but its accuracy is

limited, and some predicted values deviate significantly from measured values.

Measured and predicted Brix values
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Figure 4.27 Graphs of measured and predicted Brix values from RGB and L*a*b*

color values when using linear regression
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4.4.1.2 Use SVR (radial basis function) to Predict Brix Values from

Table 4.36 shows that SVR with an RBF kernel achieved moderate

overall error but exhibited high absolute error in certain classes, such as Class 0 (5.4431)

and Class 1 (3.7961)

Table 4.36 Brix prediction errors when using SVR (radial basis kernel)

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All

classes

’e*r'?gf'“te 5.4431 | 3.7961 | 2.1510 | 1.3806 | 0.8562 | 2.1798 | 1.2062 | 2.4206

Standard

e 41375 | 27370 | 1.5682 | 1.1798 | 0.8891 | 1.2561 | 0.0596 | 2.5995

Erff‘r“"e 16270 | 07647 | 01974 | 00810 | 00397 | 00981 | 00981 | 0.4171

Standard

Seuintion 1.3297 | 0.6002 | 0.1697 | 0.0723 | 0.0398 | 0.0538 | 0.0596 | 0.7834

Eﬁg’f”tage 162.704 | 76.4659 | 19.7353 | 8.0994 | 3.9657 | 9.8072 | 6.1593 | 41.7138

3;3?:3;?1 132.969 | 60.0169 | 16.9729 | 7.2291 | 3.9786 | 5.3808 | 5.9570 | 78.3378

Figure 4.28 shows the effectiveness of using the SVR (radial basis

kernel) model to predict Brix values. The R? value was 0.739. When the Brix values

were low, the deviation between the predicted value and the measured value was very

high. The predictive performance of this model was relatively poor in a low Brix value

region.
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Figure 4.28 Graphs of measured and predicted Brix values when using SVR

(radial basis kernel)

4.4.1.3 Use KNN (k=3) to Predict Brix Values from RGB and L*a*b*

Color Values

Table 4.37 displays the errors when using the KNN (k=3) for Brix
prediction. The average absolute error for all classes was 1.0944, and the percentage

error was 12.810. The standard deviation of class 6 was extremely low compared to

those of other classes. Overall, the KNN (k=3) exhibite smaller errors and higher

stability in predicting Brix values, with lower errors and better prediction performance

than other methods.

Table 4.37 Errors when using KNN (k=3) to predict Brix values from RGB color values

ClassO | class1 | class2 | class3 | class4 | class5 | class 6 All

classes

posolue | 0511 | 0.9739 | 1.2839 | 1.2413 | 0.7362 | 14185 | 0.6746 | 1.0944

Sandard 111191 | 1.0486 | 1.2300 | 06216 | 09195 | 1.3087 | 0.0284 | 1.1779

Relaive | 02406 | 0.1678 | 0.1104 | 0.0714 | 0.0346 | 0.0625 | 0.0625 | 0.1281

Standard

deviation | 0-3193 | 0.1815| 0.0984 | 0.0365 | 0.0426 | 0.0547 | 0.0284 | 0.2757

POrOONta0e | 24061 | 16.780 | 11.035 | 7.1358 | 3.4584 | 6.2516 | 3.5460 | 12.810
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Table 4.37 Errors when using KNN (k=3) to predict Brix values from RGB color values

(continued)

class 0 class 1 class 2 class 3 class 4 class 5 class 6 All
classes
Standard
deviation 31.927 18.146 9.8393 3.6470 4.2593 5.4743 2.8398 27.573

Figure 4.29 shows the results of employing the KNN (k=3) to forecast
the Brix value based on RGB and L*a*b* values. The figure illustrates that the model
closely adheres to the trend of the measured values. This indicated that the KNN could
provide high accuracy in predicting the Brix values. The attained R? value was 0.947,

indicating robust fitting capability.

Measured and predicted Brix values
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Figure 4.29 Graphs of measured and predicted Brix values when using KNN (k=3)

4.4.2 Comparison of Different Methods for Predicting pH Values Using
RGB and L*a*b* Color Features

Table 4.38 compares the RZ values of various methods for predicting pH values
using RGB and L*a*b* color features. Among the methods evaluated, SVR with a radial
basis function kernel achieved the highest R2 value of 0.873, demonstrating its superior
performance in pH prediction. KNN (k=3) also performed well, with an R? value of

0.860. Linear regression and SVR with linear and polynomial kernels showed R? values
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of 0.776, 0.743, and 0.729, respectively. However, KNN with higher k values (k = 5 and
k = 7) performed less effectively, with R? values of 0.608 and 0.658, respectively.

Based on these results, further analysis will focus on the prediction errors
associated with SVR (radial basis function kernel), KNN (k=3), and linear regression to

better understand their predictive capabilities for pH values.

Table 4.38 R? values of different methods for predicting pH values using RGB and

L*a*b* color features

Features Methods R?
RGB,L*a*b* values Linear regression 0.776
RGB,L*a*b* values SVR (linear) 0.743
RGB,L*a*b* values SVR (polynomial) 0.729
RGB,L*a*b* values SVR (radial basis function) 0.873
RGB,L*a*b* values KNN (k=3) 0.860
RGB,L*a*b* values KNN (k=5) 0.608
RGB,L*a*b* values KNN (k=7) 0.658

4.4.2.1 Use Linear Regression to Predict pH Values from RGB and

L*a*b* Color Values

The equation derived from the application of linear regression to

predict Brix values is as follows:

pH value=(R*0.21)+(G*-0.27)+(B*0.009)+(L*-0.22)+(a*-.001) +(b*0.009)
+5.377 (4-8)

Table 4.39 shows that linear regression achieved small and stable
errors in predicting pH values, with the absolute error ranging from 0.0664 (Class 4) to
0.2173 (Class 6) and a moderate overall standard deviation of 2.5795%.
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classO | class1 | class2 | class 3 | class 4 | class 5 | class 6 All

classes

ri’gf'“te 0.2036 | 0.1330 | 0.1717 | 0.1630 | 0.0664 | 0.1402 | 0.2173 | 0.1548

Standard | 119 | 00852 | 0.1076 | 0.0833 | 0.0534 | 0.1176 | 0.0368 | 0.1205
deviation

Er‘i:)ar“"e 0.0509 | 0.0305 | 0.0380 | 0.0356 | 0.0137 | 0.0280 | 0.0280 | 0.0337

Standard | ) 531, | 00194 | 0.0236 | 0.0183 | 0.0108 | 0.0234 | 0.0368 | 0.0258
deviation

Efrg’f”tage 5.0943 | 3.0497 | 3.7971 | 3.5577 | 1.3716 | 2.7994 | 3.9994 | 3.3689

Standard | 51105 | 1 9382 | 2.3608 | 1.8349 | 1.0825 | 2.3426 | 3.6768 | 2.5795
deviation

Figure 4.30 shows the use of a linear regression model to predict the

pH values based on RGB and L*a*b* color values. The red dots represented the

measured pH value, while the blue dots represented the predicted value. The R? was

0.776, indicating a high correlation between the predicted and actual values.

pH values
o

Measured and predicted pH values
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Figure 4.30 Graphs of measured and predicted pH values from RGB and L*a*b*

color values when using linear regression
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4.4.2.2 Use SVR (radial basis function) to Predict pH Values from
RGB and L*a*b* Color Values

Table 4.40 shows the errors in predicting pH values using the SVR
(radial basis kernel). The absolute errors ranged from 0.0541 to 0.1569 for different
banana classes, and an overall average absolute error was 0.1012. The error when
applying the SVR (radial basis kernel) found in each class was quite small. The overall
performance of the model in pH prediction was better than those of SVR (linear kernel)

and SVR (polynomial kernel).

Table 4.40 pH prediction errors when using SVR (radial basis kernel)

classO | class 1 | class2 | class 3 | class 4 | class 5 | class 6 All

classes

Qtr’gf'“te 0.1569 | 0.0877 | 0.0541 | 0.1025 | 0.0628 | 0.1262 | 0.1317 | 0.1012

Standard | 1 123 1 5 5708 | 0.0390 | 0.0920 | 0.0401 | 0.0713 | 0.0228 | 0.0951
deviation

Er‘i'oar“"e 0.0396 | 0.0202 | 0.0119 | 0.0225 | 0.0130 | 0.0251 | 0.0251 | 0.0222

Standard | 4359 | 0167 | 0,0086 | 0.0208 | 0.0082 | 0.0142 | 0.0228 | 0.0221
deviation

Efr:)cf”tage 3.9635 | 2.0201 | 1.1950 | 2.2507 | 1.3033 | 2.5123 | 2.4293 | 2.2153

Standard | 5 0009 | 9 6659 | 0.8553 | 2.0821 | 0.8204 | 1.4212 | 2.2755 | 2.2090
deviation

Figure 4.31 shows the measurement and prediction results of pH using
SVR (radial basis kernel). The model’s R? value, which reaches 0.873, indicated that
the predicted and measured values agreed quite well. Even so, there were minor

variations between the measured and predicted values.
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4.4.2.3 Use KNN (k=3) to Predict pH Values from RGB and L*a*b*

Table 4.41 shows the errors when using the KNN (k=3) for pH

prediction. The absolute error was relatively small in all banana classes, with an overall

average absolute error of 0.0440. KNN (k=3) achieved a low relative and percentage

error of 0.0218 and 2.1771, respectively. The results revealed that KNN was efficient

for predicting pH values based on RGB and L*a*b* color features.

Table 4.41 pH prediction errors when using KNN (k=3)

classO | class1 | class2 | class 3 | class 4 | class 5 | class 6 All

classes

eArE;?'“te 0.1669 | 0.0915 | 0.0553 | 0.0672 | 0.0708 | 0.1715 | 0.0895 | 0.0988

Standard |y 10,1 | 00576 | 0.0462 | 0.0831 | 0.0690 | 0.1259 | 0.0146 | 0.1072
deviation

Eﬁ:)ar“"e 0.0423 | 0.0209 | 0.0122 | 0.0148 | 0.0147 | 0.0344 | 0.0344 | 0.0218

Standard | ) 5101 | 00132 | 0.0102 | 0.0187 | 0.0144 | 0.0256 | 0.0146 | 0.0255
deviation
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Table 4.41 pH prediction errors when using KNN (k=3) (continued)

class 0 | class 1 | class 2

All

class 3 | class 4 | class 5 | class 6
classes

Pergfrgtfge 4.2268 | 2.0921 | 1.2220 | 1.4775 | 1.4690 | 3.4413 | 1.6494 | 2.1771
standard | ) anas | 1 3166 | 1.0171 | 1.8728 | 1.4388 | 2.5646 | 1.4639 | 2.5491
deviation

Figure 4.32 shows the results of using the KNN (k=3) to predict the
pH value based on RGB and L*a*b* values. The obtained R2 value was 0.860,

indicating that the model explains 85.97% of the data changes. Compared with the

previous linear regression and SVR, it is only lower than that of the SVR (radial basis

function) model.

Measured values and predicted pH values

©— Measured Values —&— Predicted Values

pH values
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Figure 4.32 Graphs of measured and predicted Brix values when using KNN (k=3)



Chapter 5

Conclusion and Recommendations

5.1 Conclusion

This study investigated the use of various machine learning models for banana
ripeness classification, Brix (sweetness), and pH prediction. The research background
indicated that the increasing global demand for fruit quality has rendered traditional
manual detection and classification methods unsuitable for large-scale production due
to their time-consuming, subjective, and ineffective nature. Therefore, the study
concentrated on machine learning-based classification and prediction systems to achieve
high accuracy in banana ripeness classification and to predict internal fruit quality, such

as Brix and pH values. The work was divided into two main parts.

The first part studied and compared the performance of four machine learning
classifiers—MobileNet, ResNet50, a simple CNN, and VGG16—in banana
ripeness classification tasks and concludes that MobileNet performed the best among all
models, achieving an accuracy of 98.45%, demonstrating its superiority in banana
ripeness classification. Although VVGG16 and CNN also demonstrated strong classification
capabilities, achieving accuracies of 96.82% and 95.70%, respectively, they were slightly
inferior to MobileNet in terms of efficiency and performance. In contrast, ResNet50

performs relatively poorly, with an accuracy rate of only 92.43%.

The second part used a variety of machine learning algorithms to predict Brix
and pH, including linear regression, SVR, and KNN. The first method predicted Brix
and pH values based on the softmax features extracted by MobileNet. The results
revealed that KNN performed the best at predicting Brix values, with an R? value of
0.984. It did better than linear regression (R? = 0.958) and SVR (R? values for different
kernel functions ranging from 0.925 to 0.952). KNN also performed the best in pH
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prediction, with an R? value of 0.972. This indicated that KNN can more accurately
predict Brix and pH values in prediction tasks based on softmax features.

This study evaluated machine learning models for predicting Brix and pH
values using RGB, L*a*b*, and combined RGB and L*a*b* color features measured
from one point on a banana. The results indicated that there were significant differences
in the performance of different methods when predicting pH and Brix values. For pH
prediction, when using L*a*b* features, KNN (k=3) performed the best. SVR with a
radial basis kernel obtained a rather high Rz of 0.819. When using RGB and L*a*b*
features, the SVR (radial basis kernel) achieved the best performance at 0.873. For Brix
value prediction, KNN performed well with an R? value of 0.941. Overall, KNN
performs outstandingly in Brix prediction. In contrast, the performance of linear
regression, SVR using a linear kernel, and SVR using a polynomial kernel was poorer.
These results emphasized the superior predictive ability of the KNN when using the
combined RGB and L*a*b* features.

5.2 Recommendations

5.2.1 Limitations

Due to the limited amount of image data in certain ripeness stages, the
performance of the model may decrease when dealing with imbalanced data. This study
predicts Brix and pH values based solely on the RGB and L*a*b* color values of a
single location on bananas. Although these color features can, to some extent, reflect
the internal quality of bananas, they may not be sufficient to capture more complex

nonlinear relationships.

This study only focused on the detection and analysis of individual bananas,
while in practical applications, bananas are usually transported and sold in whole
bundles. Due to the possibility of individuals with different maturity levels in whole

bundles of bananas, the predicted results of individual bananas may not accurately
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reflect the average maturity level of the whole bundle of bananas. The object of this

study was only Musa acuminata bananas.

5.2.2 Future Outlook

In the future, more banana images at different ripeness stages should be
collected to ensure a more balanced distribution of various types of data. At the same
time, data on different varieties of bananas and other fruits can be added to improve the
generalization ability of the model. To enhance the adaptability of the model in practical
environments, data should be collected under various lighting conditions, backgrounds,
and shooting angles. Future research should further expand on existing work by
introducing predictions of mineral composition, in addition to predicting Brix and pH
values. This will help to more comprehensively evaluate the nutritional quality of fruits

and improve accurate prediction of fruit ripeness and internal nutritional components.

Although different banana varieties may have differences in appearance and
maturation process, this study suggested that color features such as RGB and L*a*b*
have high sensitivity in predicting the internal quality of bananas, such as Brix and pH
value. This discovery showed that these color features could serve as reliable indicators
for predicting internal quality across varieties, and this method can be extended to other

similar banana varieties.
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