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Abstract 

 This study explored the application of machine learning models for classifying 

banana ripeness and predicting internal fruit qualities such as Brix (sweetness) and pH. 

Recognizing the inefficiency and subjectivity of traditional fruit quality assessment 

methods, the research aimed to develop accurate, scalable systems using advanced 

classification and prediction techniques. The study comprised two main parts. In the 

first part, four classifiers—MobileNet, ResNet50, a simple CNN, and VGG16—were 

evaluated for banana ripeness classification. MobileNet achieved the highest accuracy 

(98.45%), surpassing VGG16 (96.82%), CNN (95.79%), and ResNet50 (92.43%), 

demonstrating its superior performance in ripeness classification tasks. The second part 

investigated various prediction models for Brix and pH values, including linear 

regression, support vector regression (SVR), and k-nearest neighbors (KNN). Softmax 

features extracted via MobileNet were utilized for predictions. KNN demonstrated 

superior performance, attaining R² values of 0.984 for Brix and 0.972 for pH, surpassing 

linear regression and SVR, which yielded R² values between 0.925 and 0.958. 

Additional experiments using RGB, L*a*b*, and combined RGB and L*a*b* color 

values showed KNN’s superiority, with R² values of 0.947 for Brix and 0.896 for pH 

using RGB and L*a*b* color values. 
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Chapter 1 

 

Introduction 

 

1.1 Background and Significance of the Problem 

 

People have higher expectations for fruit quality as their living levels and 

quality of life have improved. Foreign trade is also impacted by quality, so it is critical 

to improve fruit quality testing and grading. Fruit quality plays a critical role in 

influencing international trade, especially as consumer expectations rise for high-

quality, well-graded produce. Emphasis on improving testing and classification 

standards for fruit quality is becoming increasingly crucial in the agricultural sector 

(Moreno et al., 2021). One of the most commonly consumed fruits worldwide is the 

banana. After harvest, there is a respiratory peak of ripening, causing the fruits to 

become soft or even rot. This means that bananas have a very short shelf life. Customers 

who buy bananas in the market usually pay attention to the color of the peel first, as the 

color of bananas usually reflects the ripeness of the bananas (Saputro, Juansyah, & 

Handayani, 2018). Some people have particular preferences for the ripeness of their 

bananas. Due to their higher starch content compared to ripe bananas, unripe bananas 

contain less sugar. Ripe bananas taste better because they are sweeter, but studies of 

overripe bananas have shown that consumers are less likely to buy them because of their 

inferior quality, brown spots, and lower hardness (Symmank, Zahn, & Rohm, 2018). 

 

Banana ripeness classification is crucial in agriculture as it determines the 

quality of bananas. The traditional use of a sensory assessment of fruit ripeness is costly, 

time-consuming, and skill-dependent. At present, the identification methods for fruit 

ripeness mainly rely on traditional manual discrimination and physicochemical analysis. 

The manual grading method wastes a lot of manpower and resources, and because 

people's senses differ, it can be challenging to test and grade fruits accurately. The 

subjectivity of grading is relatively strong, and prolonged observation can lead to eye 
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fatigue. In addition to being inefficient, this method cannot guarantee the quality of 

grading (Sarkar, Das, Prakash, Mishra, & Singh, 2022). Therefore, non-destructive 

approaches such as image analysis are required for the recognition of various vegetables, 

fruits, and other agricultural products. Agricultural tasks such as fruit recognition, fruit 

freshness determination, and fruit defect detection employ computer vision and machine 

learning (Castro et al., 2019). 

 

The advancement of computer vision and machine learning technology can be 

used to automatically classify fruit ripeness. Deep learning technology has evolved 

within machine learning, and one of the deep learning approaches that plays a crucial 

role is the convolutional neural network (CNN) (Saragih & Emanuel, 2021). CNNs were 

used to classify the ripeness level of a banana bunch and achieved an accuracy of 

91.21% (Phoophuangpairoj, Ngoenrungrueang, & Audomsin, 2023). MobileNet is a 

variant of the CNN architecture designed to reduce the number of modeled parameters 

and computational complexity while maintaining good performance. Although 

MobileNet is lightweight, it can still provide good performance in tasks such as image 

classification and object detection. This makes it an ideal choice for image processing 

in environments with limited computing resources. MobileNet reduces the operation of 

standard convolution used in the standard convolutional neural network to a depth-wise 

separable convolution, which consists of depth-wise convolution and point-wise 

convolution (Howard et al., 2017). ResNet50 is a 50-layer convolutional neural 

organization. The residual network avoids the gradient disappearance and explosion 

issues that the conventional CNN model had by utilizing the skip connection concept, 

which adds the original input to the convolutional layer's output (Sharma & Singh, 

2021). 

 

The use of image processing technology has achieved high accuracy in the 

classification and detection of fruits. This study used professional equipment to collect 

the pH value, sweetness, hardness, and color changes, as well as images of seven stages 

of bananas. This study aims to find an efficient method for classifying the ripeness of 

bananas. Researchers looked into how to categorize fruit maturity using machine 

learning techniques. While the skin of a number of banana varieties can be used to 
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evaluate their maturity, research needs to be done to forecast the characteristics within. 

This study will use various machine learning models for the classification of banana 

maturity, prediction of Brix (sweetness), and pH value. 

 

1.2 Research Objectives 

 

1.2.1 Construct Machine Learning Models that Categorize Banana 

Ripeness Based on Images 

 

Develop an effective machine learning model capable of precisely classifying 

banana ripeness. This objective necessitates the acquisition of an adequate quantity and 

variety of banana image datasets, data preprocessing, the selection of suitable machine 

learning architectures, and the utilization of precision, recall, F1-score, macro average, 

and weighted average as metrics for assessing the performance of classification models. 

 

1.2.2 Finding the Relationship Between pH and Brix and the Ripening 

Properties of Bananas 

 

The association between banana qualities and pH, sweetness, and fundamental 

exterior factors will be investigated through statistical approaches and machine learning.  

 

1.2.3 Create a Brix, pH, and Ripeness Prediction Model 

 

Create predictive models that can determine a banana's pH and sweetness and 

its maturity based on machine learning approaches. 

 

1.3 Scope of the Study    

 

1.3.1 This study applied various machine learning models to classify banana 

maturity, and this study focused on the Musa acuminata bananas.  
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1.3.2 This study applied various methods to predict Brix and pH values. The 

research focused on how to accurately classify the maturity of bananas and predict their 

Brix and pH levels from banana images and from the RGB and L*a*b* color values 

measured from a point on a banana. 

 

1.4 Research Framework 

 

This research framework focuses on classifying banana ripeness and predicting 

internal fruit qualities: Brix (sweetness) and pH values, using machine learning 

approaches. It consists of three main parts: 1) classifying banana ripeness from images, 

2) predicting banana Brix and pH values using softmax features, and 3) predicting 

banana Brix and pH values using RGB and L*a*b* color values. 

 

Figure 1.1 illustrated that the first part involved the classification of banana 

ripeness utilizing machine learning classifiers, including MobileNet, ResNet50, CNN, 

and VGG16. In the second part, the MobileNet is further used to extract features (seven 

softmax values) from the images, which are then used as inputs for linear regression, 

SVR, and KNN to predict Brix and pH values. In the third part, RGB and L*a*b* color 

data were obtained from bananas. Linear regression, SVR, and KNN utilized RGB 

values, L*a*b* values, and a mix of both to predict Brix and pH values. 

 

 

Figure 1.1 Research Framework



 

Chapter 2 

 

Literature Review 

 

2.1 Banana Ripeness 

 

Banana ripeness refers to the physiological and biochemical changes that occur 

in the fruit during ripening. The ripening stage of bananas is usually classified into seven 

stages based on the peel color, firmness, and flavor of the fruit (Zhang, Lian, Fan, & 

Zheng, 2018), as shown in Table 2.1. The first stage of banana ripening is the full green 

stage; the fruit is not yet ripe. In the second stage, the peel of the banana begins to appear 

yellow, and the green color is greater than the yellow color, indicating that the fruit is 

not yet ripe. In the third stage, the fruit starts to mature as the yellow color intensifies 

and surpasses the green color. In the fourth stage, the peel is predominantly yellow, with 

some green areas visible at the top and bottom. The fifth stage is almost completely 

yellow, with fully ripe fruit, a soft texture, and a sweet taste. The sixth stage is the 

spotted stage, where the peel has brown spots, the fruit is overripe, the texture is softer, 

and the flavor is stronger. The seventh stage is the appearance of a black color, with a 

large amount of black, overripe, and pasty texture on the fruit peel (Zhang et al., 2018). 

 

Class 0

Green and 

hard peels

Class 1

More green 

than yellow

Class 2

More 

yellow than 

green

Class 3

Yellow 

with green 

tip

Class 4

Full yellow

Class 5

Yellow with 

brown spots

Class 6
Overripe

Figure 2.1 Classification of ripeness stages of bananas 

Source: Chen & Phoophuangpairoj, 2024  
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2.1.1 Banana Ripeness Physiological and Biochemical Changes 

 

 2.1.1.1 Physiological Changes 

 During the ripening process of bananas, several physiological changes 

occur in the fruit. The most significant change is fruit softening, which is due to cell 

wall degradation and loss of turgor pressure (El-Sharkawy, 2004). This results in a 

decrease in firmness and an increase in sweetness as the fruit ripens. Due to the 

breakdown of chlorophyll and the production of carotenoids, the color of the fruit also 

changes from green to yellow (Moreno et al., 2021). 

 

 2.1.1.2 Biochemical Changes 

 The ripening of bananas is also characterized by several biochemical 

changes. The most significant change is the production of ethylene gas, a natural plant 

hormone that regulates the ripening process (El-Sharkawy, 2004). As the fruit ripens, 

ethylene production increases, leading to the activation of various enzymes that break down 

complex molecules into simpler molecules, such as starch into sugar (El-Sharkawy, 2004). 

This leads to an increase in the sweetness and aroma of the fruit. The total soluble solids 

(TSS) content of the fruit also increases with increasing ripeness, while the titratable acidity 

(TA) and pH decrease (Moreno et al., 2021). Several studies explored how physiological 

and biochemical changes during the ripening of bananas affect their fruit quality and shelf 

life. For example, Jones (2018) and Imsabai, Ketsa, and van Doorn (2006) explored the 

mechanism of finger shedding during the ripening process of banana fruits, particularly the 

differences between the "Hom Thong" and "Namwa" varieties. Research has found that the 

shedding of fruit fingers mainly occurs at the junction of the stem and flesh, but the true 

delamination area has not been detected. Therefore, the shedding phenomenon is mainly 

related to the weakening of the fruit peel. 
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2.2 Method for Detecting Banana Ripeness 

 

 2.2.1 Traditional Methods 

 

Traditional methods mainly rely on observing the appearance characteristics of 

bananas, such as color, spots, flesh texture, and fruit shape. The operator visually 

determines the maturity of bananas and categorizes them into different levels, such as 

immature, mature, and overripe. These methods are influenced by the subjective 

judgment and experience of the operator, so there may be inconsistencies. Different 

people may produce different classification results for the same banana. Traditional 

methods rely on the experience and training of operators, thus requiring time to develop 

professional skills. This also limits the application of these methods in large-scale 

automation environments (Sarkar et al., 2022). 

  

2.2.2 Machine Learning for Detecting Banana Ripeness 

 

Automated fruit ripeness classification is possible with the help of emerging 

computer vision and machine learning technology. Among the many advancements in 

machine learning, the CNN stands out as a key component of deep learning (Saragih & 

Emanuel, 2021). Overall, traditional methods mainly rely on manual observation and 

subjective judgment, while machine learning methods utilize computer vision 

technology and data-driven methods to provide objective, automated, and highly 

accurate banana classification. The data sources include research literature and related 

academic research in the fields of agriculture and food science. This comparison 

highlights the potential of machine learning methods in improving classification 

efficiency and accuracy, especially in large-scale production and supply chain 

management. 
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2.3 CNN Architecture 

 

CNN, with its numerous variations, is one of the most widely used deep neural 

network designs. These are typical deep learning models for computer vision because 

of a number of features, including shift invariance, parameter sharing, and convolutional 

processes. The possible CNN architecture stacks three types of layers—convolutional, 

pooling, and fully connected, also known as dense layers—on top of each other (Albawi, 

Mohammed, & Al-Zawi, 2017). Figure 2.1 depicted the condensed CNN architecture 

for classifying dogs. Machine learning problems also make use of CNN. Deep learning 

has made significant progress in picture categorization over the last ten years, 

particularly in relation to CNN.  

 

Figure 2.2 A simplified CNN architecture for dog classification 

Source: Phiphiphatphaisit & Surinta, 2020 

 

Researchers developed a fruit grading control system using convolutional 

neural networks. They used CNN for tasks involving the detection and identification of 

fruits through parameter optimization. The test results for 971 images in 30 categories 

had a classification accuracy of about 94%. This implies that control applications that 

depend on visual subsystems can utilize the system and approach (Khaing, Naung, & 

Htut, 2018).  

 

There are various types of Convolutional Neural Network (CNN) architectures 

in the fields of image classification, segmentation, and object detection. Most 
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architectures primarily focus on accuracy as a key factor in model implementation. 

However, in practical applications, besides accuracy, other important factors such as 

memory usage and performance are equally critical. Although each CNN architecture 

has its own advantages and limitations, research comparing different architectures is not 

common, especially on how to choose the appropriate architecture based on actual 

application requirements and hardware capabilities (Darapaneni, Krishnamurthy, & 

Paduri, 2020). 

 

The implementation of CNNs in automation systems and image classification 

jobs has received significant attention and validation in recent years. For instance, 

researchers used deep learning models, such as CNN, to categorize agricultural products. 

They were successful in obtaining effective distinction of several fruit types by 

analyzing the form, texture, and color characteristics of the fruits (Rahman et al., 2023). 

This suggested that the use of CNN models in precision agriculture could potentially 

improve classification effectiveness. 

 

2.4 MobileNet Architecture 

 

Howard et al. (2017) introduced the depthwise separable convolution-based 

MobileNet architecture, aiming to build a lightweight deep CNN that reduces 

computation time and generates excessively tiny models. MobileNet utilizes depthwise 

separable convolution to minimize computational complexity and parameters in 

conventional convolution operations. The fundamental concept is to partition the 

ordinary convolution into two phases: depthwise convolution and pointwise convolution. 

Deep convolution performs convolution operations on each input channel, while point 

convolution combines data from multiple channels using 1x1 convolution, which makes 

computing much simpler. Every layer of the MobileNet architecture incorporates batch 

normalization and the ReLU activation function, enhancing the network's training 

performance. MobileNet markedly decreases processing demands and model 

dimensions, rendering it appropriate for deployment on mobile devices. 
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Phiphiphatphaisit and Surinta (2020) investigated food classification with the 

MobileNet architecture, which includes batch normalization, dropout layers, rectified 

linear units, global average pooling layers to mitigate overfitting, and a softmax layer at 

the last layer. The outcomes of the experiments indicated that the suggested iteration of 

the MobileNet architecture attains significantly more accuracy compared to the first 

MobileNet architecture. 

 

Gulzar (2023) developed a fruit recognition system that used the MobileNet 

architecture as its foundation. They constructed this system to classify fruits. This was 

accomplished by the use of batch normalization and global average pooling layers. In 

addition, the generalization capability of the model was further improved by the 

combination of data augmentation and transfer learning. 

 

The MobileNet model is widely used in computer vision tasks for mobile and 

embedded devices due to its excellent balance between accuracy and speed. Howard et al. 

(2017) first proposed MobileNet V1, which significantly reduced the model's parameters 

and computational complexity by introducing depthwise separable convolutions. It 

demonstrated high accuracy and significant speed advantages in classification tasks on 

the ImageNet dataset. 

 

2.5 ResNet50 Architecture 

 

ResNet50 is a 50-layer convolutional neural network. This network solves the 

gradient disappearance and explosion problem with the traditional CNN model by using 

the skip connection idea to add the original input to the output of the convolutional layer 

(Sharma & Singh, 2021). Figure 2.2 illustrated the residual network, or ResNet, as its 

acronym. Deep convolutional neural networks have advanced significantly in the area 

of image detection and classification throughout time. It became popular to solve more 

difficult problems and increase the accuracy of categorization or recognition. Over 

recent years, deep convolutional neural networks have achieved significant 

advancements in image detection and classification tasks. They have become essential 

for addressing complex problems and improving accuracy in various domains, such as 
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object recognition and medical image analysis. The training of deeper networks remains 

challenging due to problems such as vanishing gradients and overfitting, particularly as 

network depth increases (Burt, Thigpen, Keil, & Principe, 2021). Residual learning 

frameworks were designed to address these issues by facilitating more efficient training 

of deeper networks. 

 
Figure 2.3 A residual block in a deep residual network 

Source: Researcher 

 

In terms of network structure improvement, scholars proposed HS ResNet 

(Hierarchical Split ResNet), which improves the performance of the model by 

introducing multi-level segmentation and connections in a single residual block. This 

improved ResNet-50 achieved a Top-1 accuracy of 81.28% on the ImageNet-1k dataset, 

demonstrating its advantages in image classification tasks (Yuan et al., 2020). 

 

ResNet50 is often used as a backbone network for feature extraction, providing 

powerful feature representation capabilities for object detection and semantic 

segmentation tasks. For example, frameworks such as Mask R-CNN used ResNet50 as 

the infrastructure to achieve high-precision detection and segmentation of targets on the 

COCO dataset (He, Gkioxari, Dollár, & Girshick, 2017). Cell image classification based 

on deep learning can prevent erroneous diagnostic decisions. This study mainly 

investigated the implementation of transfer learning to improve the diagnostic accuracy 

based on the classification of malaria-infected cells. The total number of infected and 

uninfected cell images in the dataset was 27,558. 70%, 15%, and 15% were used for 

training, testing, and validation, respectively. The model's inputs were RGB (red, green, 

blue) images.  
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The ResNet50 using pre-trained weights, with the final layer being a fully 

connected dense layer with sigmoid activation, was applied. The proposed model consists 

of two layers: a pre-trained ResNet layer and a dense layer. Reddy and Juliet (2019) 

recommended against freezing some layers, such as batch normalization (BN) layers, due 

to the difficulty in matching the dataset's average and variance with the pre-trained 

weights. 

 

2.6 VGG16 Architecture 

 

A deep CNN architecture called VGG16 was proposed by Simonyan and 

Zisserman (2015) in the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). Its goal was to make image classification tasks more accurate. Simonyan 

and Zisserman (2015) named the architecture VGG16 due to its 16 trainable layers of 

weights, which included 13 convolutional layers and 3 fully connected layers. VGG16 

reduced the number of parameters while ensuring feature extraction depth by stacking 

multiple 3x3 convolution kernels instead of larger ones (such as 7x7 or 5x5). This design 

concept effectively improved the recognition ability of the model while reducing 

computational complexity. The network structure of VGG16 adopts a fixed max pooling 

layer, which down samples images after each convolutional layer to gradually reduce 

the size of the feature map while preserving key information. The last three fully 

connected layers classify the high-level features extracted by convolution (Simonyan & 

Zisserman, 2015). 

 

VGG16 was widely used in image classification tasks as one of the classic 

convolutional neural network (CNN) architectures. VGG16’s deep structure and small-

sized convolution kernels have made it a foundational architecture in image 

classification applications in recent years. These properties enable VGG16 to capture 

rich feature information, resulting in high accuracy on huge datasets like ImageNet 

(Kumar, S. & Kumar, H., 2024). Despite these developments, VGG16 remains a 

baseline model for comparing newer architectures in tasks like object detection and 

medical picture categorization. Although the earliest proposed VGG16 was 

computationally intensive, researchers optimized its performance in various ways to 
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meet the needs of efficient classification. For example, some studies use transfer 

learning to accelerate the model training process while improving the accuracy of few 

sample tasks. VGG16 and VGG19 were proposed using CNN architectures for 

processing medical images to classify brain tumors and pneumonia. Transfer learning 

strategies and data augmentation techniques reduced overfitting by fine-tuning and 

freezing models, enhancing classification reliability (Al-Azzwi, 2024). A hybrid  

pre-trained VGG16 convolutional neural network (CNN) and support vector machine 

(SVM) classifier model was also proposed. VGG16 was used to extract features from 

input remote sensing data, while the SVM classifier performed classification output 

based on the feature map output by CNN (Tun, N. L., Gavrilov, Tun, N. M., Trieu, & 

Aung, 2021). In addition, VGG16 is integrated into multiple model structures and 

combined with other networks such as ResNet and Inception to improve classification 

accuracy. For example, the publicly available chest X-ray image dataset obtained from 

the Kaggle platform was used for pneumonia recognition, and an improved VGG16 

model was employed to improve the classification accuracy of pneumonia X-ray images 

(Jiang, Liu, Shao, & Huang, 2021). In order to further improve the classification 

performance of remote sensing images, many researchers have explored hybrid models 

that combine traditional machine learning methods with deep learning techniques. A 

pre-trained VGG16 network was combined with a support vector machine (SVM) 

classifier to form a hybrid classification model. In this type of model, VGG16 was 

responsible for extracting features from the input remote sensing image, while SVM 

makes classification decisions based on the feature map output by CNN (Tun et al., 

2021). 

 

2.7 Feature Extraction  

 

Feature extraction refers to the process of extracting useful information from 

raw data. Typically, it simplifies the data's complexity while preserving pertinent 

information for the task. Many fields, particularly image processing, natural language 

processing, and biomedical data analysis, have widely applied and developed feature 

extraction in recent years. 
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2.7.1 Feature Extraction in Image Processing 

 

Research on low-level feature extraction (such as color, texture, and shape 

features) in image processing continues to advance, especially in content-based image 

retrieval (CBIR), where it has found widespread application. These methods could 

effectively capture the physical features of images, helping the system to better classify 

and retrieve images. Wang, Han, and Jin (2019) applied sparse representation to extract 

global and local features, thereby improving retrieval efficiency and accuracy.  

 

2.7.2 RGB Features 

 

The RGB color model is crucial in various fields, especially in digital imaging 

and computer graphics. It signifies colors as combinations of three fundamental hues: 

red, green, and blue. Each color channel can take values typically ranging from 0 to 255, 

enabling the depiction of more than 16 million unique colors. Recent research works 

have investigated multiple aspects of the RGB color model. A study examined the 

impact of color space selections on deep learning image colorization, revealing that 

different color representations can significantly affect model performance in image 

restoration and classification tasks (Kong, Tian, Duan, & Long, 2021). Another study 

investigated the reassessment of RGB representation to enhance image restoration 

models, suggesting that improvements in RGB processing could produce better results 

in real-world applications. The effectiveness and applicability of the RGB color model 

in various contexts have prompted ongoing investigation into other color spaces that 

may offer advantages in specific scenarios, particularly in machine learning and 

computer vision (Ballester et al., 2022). Each channel’s value typically ranges from 0 

to 255, indicating the intensity levels of red, green, and blue, respectively (Poynton, 

2012). In contrast, the L*a*b* color model is grounded in human visual perception and 

is composed of three components: L (lightness), a (from green to red), and b (from blue 

to yellow) (Sharma, 2017). 

 

The L*a*b* color space is a color representation grounded in human visual 

perception, designed to offer a model that more accurately reflects actual colors. L*a*b* 
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color space is a color representation model based on human visual perception, which 

has been widely used in image processing and color management fields for its accurate 

description of colors and uniform color distribution characteristics. This space consists 

of three components: L represents brightness, a represents the red green axis, and b * 

represents the yellow blue axis. This structural design enabled it to accurately 

characterize color changes (Luo, Cui, & Rigg, 2001). Utilizing the L*a*b* color space 

enabled users to exert more precise control over colors, thereby improving the visual 

effects of digital photographs (Borenstain, Bar-Haim, Goldshtein, & Cohen-Taguri, 

2020). 

 

RGB and L*a*b* color measurements were utilized to classify the ripeness of 

Banganapalli mangoes during their ripening process. The significance level for RGB and 

L* a* b* data concerning ripening days was analyzed using ANOVA. During the ripening 

phase, the L*a*b* values and RGB values were statistically significant (P < 0.01). 

Compared to L*a*b* color measurement, RGB color measurement would be more 

appropriate because it only requires a straightforward image processing technique and 

inexpensive equipment. The red ratio (R/B), the green ratio (G/B), and both blue ratios 

accurately predicted mango ripening (EyNambi, Thangavel, Shahir, & Geetha, 2015). 

 

2.8 Softmax Function 

 

Softmax is a mathematical function used to convert a set of values (such as 

logits output by a model) into a probability distribution. It is commonly used in the final 

layer of classification problems, mapping the scores (logits) of each class to values 

within the [0, 1] interval and ensuring that the sum of probabilities for all classes is 1 

(Goodfellow, Bengio, & Courville, 2016). The last layer in the MobileNet architecture 

is usually a fully connected layer. A softmax function changes the output from this layer 

to a normalized probability distribution, which ends the classification task. The 

extraction of softmax values not only yields the model's prediction outcomes but also 

assesses the model's confidence via these probability values. In image classification 

tasks, the highest value produced by softmax typically indicates the model's most 

confident predicted category (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018). 
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2.9 KNN, Support Vector Regression (SVR), and Linear Regression for 

Prediction 

 

 In recent years, various fields have widely applied KNN, an instance-based 

nonparametric algorithm, to prediction tasks. Its simplicity and ease of implementation 

make it perform well on small datasets (Zhan, Zhang, & Liu, 2021). However, KNN is 

sensitive to data noise and parameter K values, and researchers have proposed various 

optimization methods to improve its predictive performance. For example, some studies 

combined particle swarm optimization (PSO) algorithms to automatically tune K values, 

thereby reducing prediction errors (Xie et al., 2024). The KNN algorithm is widely used 

in classification analysis, but it is susceptible to interference from noisy samples, which 

can affect classification performance and prediction accuracy (Ukey et al., 2023). 

 

 SVR is an extension of SVM aimed at solving nonlinear relationships in 

regression problems. SVR maps data to high-dimensional space through kernel 

functions, enabling accurate prediction on complex nonlinear datasets. In the past few 

years, SVR has performed well in multiple fields, especially in meteorology, hydrology, 

energy load forecasting, and other areas (Zhan et al., 2021). Researchers have come up 

with better ways to choose kernel functions and optimize parameters, like combining 

Bayesian optimization or grid search, to make SVR better at making predictions and 

applying its findings to more situations (Sahoo, Hoi, & Li, 2019). In the fields of energy 

consumption and environmental pollutant concentration prediction, the combination of 

SVR with other algorithms, such as genetic algorithms and neural networks, has shown 

good prediction performance (Li, 2020). SVR performs well in handling time series data 

with strong nonlinear relationships and has strong application value. 

 

 The linear regression model is still widely used in predictive analysis due to its 

advantages in interpretability and ease of implementation. Demand forecasting, socio-economic 

analysis, and market trend research commonly employ linear regression. Its modeling 

simplicity and ease of explanation make it effective on structured datasets (Braun, Altan, 

& Beck, 2014). Some researchers use linear regression along with multivariate statistical 

analysis (like factor analysis and principal component analysis) to lessen the effect of 
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multicollinearity on how well predictions work (Hirose, H., Soejima, & Hirose, K., 

2012). Recently, researchers have gradually combined linear regression with machine 

learning methods to enhance the applicability and accuracy of predictions. Linear 

regression is one of the most interpretable prediction models (Munkhdalai, Munkhdalai, 

& Ryu, 2022). 

 

 

  

 



 

Chapter 3 

 

Research Methodology 

 

 The chapter outlined the materials, methods, and instruments used in the study, 

detailing the data collection processes for banana image classification, Brix, and pH 

prediction. It also explains the preparation of banana samples, acquisition of image and 

color data, and the methodologies for data analysis. 

 

3.1 Research Materials 

 

3.1.1 Data for Creating Image Classification 

 

The experiments used 1307 images of a banana (Musa acuminata). For the training 

and testing, the images were divided into 80% and 20%. Using 80% of the images for 

training and 20% of the images for testing, a total of 1047 images of a banana, consisting of 

205, 212, 155, 120, 106, 103, and 146 images of class 0, class 1, class 2, class 3, class 4, 

class 5, and class 6, were used for training. For the test, a total of 260 images of a banana 

consisting of 51, 53, 39, 30, 26, 25, and 36 images of classes 0 through 6 were classified. 

The standards used to categorize bananas were clear, allowing even non-experts to classify 

them reasonably correctly (Chen & Phoophuangpairoj, 2024). 

 

3.1.2 Data Used for Brix and pH Prediction 

 

The MobileNet was constructed from 80 images of bananas for the purpose of 

feature extraction, as determined by the findings of Hong and Phoophuangpairoj (2024). 

The Brix and pH prediction was examined using the softmax derived from a MobileNet 

and RGB, L*a*b*, Brix, and pH values measured from 12, 11, 13, 11, 13, 10, and 10 

bananas of class 0 to class 6, respectively. Linear regression, SVR regression, and KNN 

regression were used to analyze the data, which included three spots of RGB values, 

three spots of L*a*b*, Brix, and pH values, and softmax outputs from MobileNet. R2 
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and the discrepancies between actual and predicted values served as the basis for the 

evaluation. 

 

3.2 Research Instruments and Software 

 

3.2.1 Instruments Used in Data Collection 

 

Table 3.1 Instruments 

No. Instruments 

1. Photo Box (PULUZ) 40 x 40 x 40 cm 

2. iPhone 14 proMax camera 

3. Colorimeter (Linshang LS171) 

4. Centrifuge (SURYQ 800D) 

5. Brix Refractometer (ATAGO PAL-1) 

6. pH Tester (YIERYI  BLE-C66)   

  

A photo box (PULUZ 40 x 40 x 40 cm) and an iPhone 14 camera were used in 

this work to take pictures of bananas, and a Linshang LS171 colorimeter was used to 

measure each banana's color. To extract juice, the banana was blended and put into a 

tube. Then the juice was separated from the pulp using a centrifuge (SURYQ 800D) to 

extract the banana juice. The pH and Brix values were measured using a BLE-C66 pH 

tester and an ATAGO PAL-1 Brix refractometer. The tools utilized to gather pictures, 

color values, Brix, and pH readings of banana juice were displayed in Figure 3.1. 
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Figure 3.1 Instruments: (1) Photo Box, (2) iPhone 14 ProMax camera, (3) Centrifuge, 

(4) Colorimeter, (5) pH tester, (6) Brix refractometer  

Source: Researcher 

 

3.2.2 Research Software and Algorithms 

 

Python and machine learning packages, namely TensorFlow, Keras, and scikit-learn, 

were used to create the MobileNet, CNN, ResNet50, and VGG16 classifiers. 

Additionally, linear regression, SVR, and KNN were used to predict Brix and pH values 

from RGB and L*a*b* colors. 

 

Python served as the core programming language, integrating various machine 

learning frameworks and algorithms. It was used to implement classification models 

(MobileNet, CNN, ResNet50, and VGG16) and regression models (linear regression, 

SVR, and KNN) for predicting Brix and pH values. 

 

TensorFlow and Keras were employed to construct deep learning models such 

as MobileNet, CNN, ResNet50, and VGG16. They provided the tools for defining, 
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training, and fine-tuning these architectures, enabling accurate classification of banana 

ripeness into seven levels. 

 

Scikit-learn was used to implement machine learning algorithms like linear 

regression, SVR, and KNN. These models predicted the Brix and pH values using the 

softmax outputs of MobileNet as input features. 

 

MobileNet, a lightweight convolutional neural network architecture, was 

optimized for mobile and embedded vision applications. It was applied to classify 

banana ripeness into seven levels, with its softmax layer outputs further utilized as 

inputs to regression models for predicting Brix and pH values. 

 

Linear regression was employed to establish a linear relationship between the 

softmax outputs of MobileNet and the target values (Brix and pH). By fitting a straight 

line to the data, it provided a simple and interpretable model for predicting sweetness 

and acidity levels of bananas. 

 

SVR was utilized to capture more complex, non-linear relationships between 

the MobileNet softmax outputs and the target values. By employing kernel functions, 

SVR offered a flexible approach for improving the accuracy of Brix and pH predictions. 

 

KNN predicted Brix and pH values by finding the k most similar data points 

(neighbors) in the feature space of MobileNet softmax outputs. It calculated the average 

of the neighbors' target values, allowing for a robust and non-parametric approach to 

regression. 

 

3.3 Data Collection 

 

Figure 3.2 illustrates the steps involved in data collection: 1) Purchase bananas, 

2) Collect banana sample images, 3) Collect banana color data, 4) Collect banana juice, 

5) Measure Brix values, and 6) Measure pH values.  
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Figure 3.2 Data collection flow 

         

3.3.1 Purchase Bananas  

 

The bananas used in the study were all purchased from the Simummuang 

market, with only immature bananas from the first stage being purchased. The 

remaining banana grades were left at home to wait and observe changes in banana 

ripeness. 
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Figure 3.3 Simummuang market selling bananas 

Source: Researcher 

 

3.3.2 Collect Banana Images 

 

As shown in Figure 3.4, the photographs of bananas were taken using an iPhone 

14 Pro Max camera and a PULUZ lighting studio shooting tent box measuring 40 x 40 

x 40 cm, which provided 24-26 lumen LED brightness and a color temperature of 5500 

kelvins. 

 

Figure 3.4 Collecting banana image 

Source: Researcher 
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3.3.3 RGB and L*a*b* Color Data Collection 

 

A colorimeter was used to measure the RGB and L*a*b* color values. RGB 

and L*a*b* color values were measured from one parts of a banana middle position, as 

shown in Figure 3.5. 

 

Figure 3.5 Banana color measurement positions 

 

 

Figure 3.6 Using a colorimeter to measure RGB and L*a*b* color values 

 

Figure 3.6 shows the RGB and L*a*b* color values of bananas measured using 

a colorimeter. After collecting all color values, RGB and L*a*b* values were saved in 

an Excel table file. 
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Figure 3.7 RGB and L*a*b* color data from 5 banana 

Source: Researcher 

 

3.3.4 Collect Banana Juice 

  

The juice extraction started with putting each banana into a blender and then 

putting the blended flesh of the banana into a tube. Next, put the tube containing the 

banana pulp into the centrifuge. For grade 1-3 banana pulp, the centrifuge time was set 

to 45 minutes, and the speed was 3000 r/min. For grade 4-7 banana pulp, the centrifuge 

time was set to 20 minutes, and the speed was 2000 r/min. Figure 3.6 showed examples 

of extracted banana juices. 

 

 

Extracted 

banana juice

 

Figure 3.8 Extracted banana juice 
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3.3.5 Measure Brix Values 

 

When measuring banana juice with a Brix refractometer, take 1-2 drops of the 

extracted juice and drop them onto the detection lens of the Brix refractometer. The Brix 

values of all banana samples were measured and recorded. Figure 3.7 showed the Brix 

measurement. 

 

Figure 3.9 Brix measurement 

 

3.3.6 pH Measurement 

 

To measure the pH value, submerge the meter in banana juice, then wait 30 

seconds for the reading to be stable before recording the data. 

                             

 

Figure 3.10 pH measurement 
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3.3.7 Dataset 

 

Table 3.2 displayed the data used in the experiments for classifying banana 

ripeness and predicting Brix and pH values. 

 

Table 3.2 Dataset 

No. Dataset Name Description Number of Data 

1. Image Data 

Total images   1307 images 

For training 1047 images 

For testing 260 images 

2. RGB values 

For prediction 240 values measured 

using a colorimeter 

from 80 bananas 

3. L*a*b* values 

For prediction 240 values measured 

using a colorimeter 

from 80 bananas 

4. Brix values For prediction 80 values 

5. pH values For prediction 80 values 

 

3.4 Data Analysis 

 

3.4.1 Using MobileNet, ResNet50, CNN Classifiers for Banana Image 

Classification 

 

Figure 3.11 showed the image classification flow of the first part of the study. 

After collecting banana images, resize banana images. The images were resized to 224 

x 224 pixels. Subsequently, MobileNet, CNN, and ResNet50 were trained and employed 

to classify the banana images. 
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Figure 3.11 Banana ripeness classification flow 

 

 

3.4.2 Using Different Predictors to Predict Brix and pH Values Based on 

MobileNet Softmax 

 

As shown in Tabl 3.12, the seven outputs from a softmax layer were extracted 

and used as features to predict Brix and pH values. The features were extracted using 

MobileNet. The second part of this study was to use different prediction methods to 

predict Brix and pH values based on softmax values as input features. The prediction 

models utilized in this study include linear regression and SVR, which employs linear, 

polynomial, and radial basis kernel functions, and KNN. The experiment aimed to 

compare the performance of these models in predicting Brix and pH values. 

 

 

Figure 3.12 Using different predictors to predict Brix and pH values 
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3.4.3 Using Different Predictors to Predict Brix and pH Values Based on 

RGB and L*a*b* Values 

 

 

Figure 3.13 Using different predictors to predict Brix and pH values based on  

RGB and L*a*b* 

 

The second part used different prediction methods to predict Brix and pH 

values based on RGB and L*a*b* color values as input features. The prediction models 

utilized in this study include linear regression and SVR, which employs linear, 

polynomial, and radial basis kernel functions, as well as KNN. The experiments aimed 

to compare the performance of these models in predicting Brix and pH values. 

 

3.4.4 Result Analysis Methodology 

 

Accuracy, the overall proportion used to measure the correctness of a model 

 TP : True Positive 

 TN : True Negative 

 FP: False Positive 

 FN : False Negative 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

 

(3-1) 
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 Precision formula refers to the proportion of samples predicted as belonging 

to a certain category that actually belongs to that category, calculated using the 

following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
      (3-2) 

 

Recall refers to the proportion of samples that are correctly predicted as 

belonging to a certain category, calculated using the following formula: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3-3) 

 

The F1 Score formula balances the relationship between the harmonic mean of 

precision and recall, calculated using the following formula: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3-4) 

 

Absolute error is the difference between the predicted value and the true value, 

calculated using the following formula: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 =  |𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒| (3-5) 

Relative error is the ratio of absolute error to the true value, calculated using 

the following formula: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

|𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|
 (3-6) 

 

The percentage error is the percentage form of relative error, and the 

calculation formula is: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

|𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|
∗ 100 (3-7) 

 

R2 : The coefficient of determination measures the goodness of fit of a 

regression model to data, with values ranging from 0 to 1. The closer R2 is to 1, the 

better the model fits and can explain more variance. 

SS res: The formula for calculating the difference between the predicted and 

actual values of the model is: 

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦1𝑖 − 𝑦2𝑖)
2

𝑛

𝑖=1

 (3-8) 
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SS tot: The formula for calculating the difference between the actual value and 

the average value is: 

𝑆𝑆𝑡𝑜𝑡 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=2

 (3-9) 

R2 formula is as follows: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 (3-10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

Chapter 4 

 

Research Results 

 

 4.1 Image Classification Results 

 

This section employed CNN, ResNet50, MobileNet, and VGG16 models for 

the classification and analysis of banana ripeness. Firstly, the percentages of these four 

models in correctly and incorrectly classifying banana ripeness images were illustrated. 

The classification performance of each model was compared. Then, based on the 

classification results, generate a table containing accuracy, recall, and F1-scores to 

quantitatively analyze the performance of different models in banana ripeness 

classification. In the experiment, 20% of the images were used for testing and 80% for 

training. A total of 1047 banana images were used for training, including 205, 212, 155, 

120, 106, 103, and 146 images of classes 0, 1, 2, 3, 4, 5, and 6, respectively. In the test, 

a total of 260 banana images were classified, consisting of 51, 53, 39, 30, 26, 25, and 36 

images from 0 to 6 classes. The dataset included more images of immature bananas in 

classes 0, 1, 2, and 3, as they were easier to collect from wholesale markets. 

 

4.1.1 80% Images for Training and 20% Images for Testing 

 

Figure 4.1 displays the stacked graph of the MobileNet. Class 1 achieved an 

accuracy of 98.11%, while a minority (1.89%) misclassified class 1 bananas as class 0 

bananas. Class 2 achieved an accuracy of 94.87%, with 5.13% of the images incorrectly 

predicted as class 1. The accuracy attained in class 3 and 4 were 100% and the accuracy 

of class 5 was 96%. The model incorrectly classified 4% of the class 5 images as class 

6. Overall, the model performed well in the banana ripeness classification, especially 

class 0, 3, 4, and 6. 
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Figure 4.1 Percentage of accurate and inaccurate banana image classification using 

MobileNet (80% of images used for training, 20% for testing) 

 

Table 4.1 shows that the MobileNet model performed very well in classifying 

banana ripeness, with accuracy, recall, and F1-score all approaching or equal to 1.00, 

especially in Class 0, Class 3, and Class 4, where accuracy and recall are both 1.00. The 

overall accuracy was 98%, indicating that the model could accurately distinguish 

bananas of different ripeness levels and was a very effective classifier. 

 

Table 4.1 Precision, recall, and F1-score using MobileNet with 80% of images for 

training and 20% for testing 

       Result 

  

Real 

class 

precision recall F1-score support 

Class 0 1.00 1.00 1.00 49 

Class 1 0.98 0.98 0.98 53 

Class 2 0.95 0.97 0.96 39 

Class 3 1.00 1.00 1.00 30 

Class 4 1.00 1.00 1.00 26 

Class 5 0.96 0.96 0.96 25 

Class 6 0.97 1.00 0.99 36 
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Table 4.1 Precision, recall, and F1-score using MobileNet with 80% of images for 

training and 20% for testing (continued) 

       Result 

  

Real 

class 

precision recall F1-score support 

Macro avg 0.98 0.984 0.984 258 

Weight avg 0.982 0.984 0.983 258 

 

Figure 4.2 displays a stacked graph of prediction results of the ResNet50 model 

in different classes. The accuracy of class 1 is 96.23%, with a small number of images 

(1.89%) being incorrectly predicted as class 0 and class 2. The accuracy of class 2 is 

97.37%, with only 2.63% of the images being incorrectly predicted as class 1. The 

accuracy of category 3 is 96.67%, and 3.33% of the images were misclassified as class 

4. The classification performance of class 4 is poor, with an accuracy rate of 65.38%. 

23.08% of the images were incorrectly predicted as class 5, and 11.54% of the images 

were misclassified as class 3. The accuracy of class 5 is 88%, but 12% of the images 

were incorrectly predicted as class 6. 

 

Figure 4.2 Percentage of correct and incorrect banana image classification using 

ResNet50 (80% of images used for training, 20% for testing) 
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Table 4.2 summarizes the precision, recall, and F1-score for the ResNet50 

model, using 80% of the images for training and 20% for testing. Class 0 and Class 6 

showed excellent performance, with high F1-scores of 0.95 and 0.96, respectively, 

indicating effective classification for these classes in terms of both precision and recall. 

However, Class 4 and Class 5 had relatively lower F1-scores of 0.82 and 0.87, 

respectively. 

 

Table 4.2 Precision, recall, and F1-score using ResNet50 with 80% of images for 

training and 20% for testing 

        Result 

  

Real 

class 

precision recall F1-score support 

Class 0 0.98 0.92 0.95 49 

Class 1 0.94 0.91 0.93 53 

Class 2 0.93 0.97 0.95 39 

Class 3 0.96 0.83 0.89 30 

Class 4 0.84 0.81 0.82 26 

Class 5 0.80 0.96 0.87 25 

Class 6 0.92 1.00 0.96 36 

Macro avg 0.90 0.91 0.91 258 

Weight avg 0.92 0.92 0.92 258 

 

Figure 4.3 shows a stacked graph based on the CNN for banana ripeness 

classification. The accuracy of class 0 was 96.08%. The accuracy of class 1 was 90.57%, 

but 9.43% of the images were misclassified as class 0. The accuracy of class 2 was 

94.87%, with only a few images (5.13%) misclassified as class 1. The accuracy of class 

3 was 96.67%, with 3.33% of the images misclassified as class 4. The accuracy of class 

4 was 92.31%, and 7.69% of the images were misclassified as class 5. Classes 5 and 6 

had excellent classification performance, with no misclassifications. 
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Figure 4.3 Percentage of correct and incorrect banana image classification using CNN 

(80% of images used for training, 20% for testing) 

 

Table 4.3 displays the precision, recall, and F1-score of CNN, using 80% of 

images for training and 20% for testing. The CNN achieved 1.00 accuracy, recall, and 

F1-score in classifying banana ripeness images for Class 5 and Class 6, but its 

classification accuracy was lower than MobileNet in other classes, with Class 1 only 

achieving an accuracy of 0.90. 

 

Table 4.3 Precision, recall, and F1-score using CNN with 80% of images for training 

and 20% for testing 

      Result 

  

Real 

class 

precision recall F1-score support 

Class 0 0.96 0.93 0.96 49 

Class 1 0.90 0.91 0.91 53 

Class 2 0.93 0.95 0.95 39 

Class 3 0.96 0.96  0.97 30 

Class 4 0.92 0.91 0.92 26 

Class 5 1.00 1.00 1.00 25 
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Table 4.3 Precision, recall, and F1-score using CNN with 80% of images for training 

and 20% for testing (continued) 

      Result 

  

Real 

class 

precision recall F1-score support 

Class 6    1.00 1.00 0.99 36 

Macro avg 0.952 0.952 0.957 258 

 

Figure 4.4 shows a stacked chart based on the VGG16 model for banana 

ripeness classification. The chart primarily correctly classified Class 0 as Class 0, with 

an accuracy rate of 95.92%, but misclassifies Class 1 as Class 1 by 4.08%. The 

classification performance of Class 1 was good, with an accuracy of 94.34%. However, 

1.89% of the samples were misclassified as Class 0, and 3.77% were misclassified as 

Class 2. Class 2 was almost completely correctly classified with an accuracy rate of 

97.43%, with only 2.56% misclassified as Class 1. The accuracy of Class 4 was 96.15%, 

but 3.85% was misclassified as Class 5. The accuracy of Class 5 was 96%, with 4% of 

samples misclassified as Class 6. This indicates that the VGG16 model had good 

classification accuracy in most categories, but there were some misclassifications in 

some similar categories.  

 

 

Figure 4.4 Percentage of correct and incorrect banana image classification using 

VGG16 (80% of images used for training, 20% for testing) 
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Table 4.4 presents the precision, recall, and F1-score for the VGG16 model, 

using 80% of the images for training and 20% for testing. The results showed that Class 

3 and Class 6 had excellent performance, with F1-scores of 1.00, indicating that the 

model correctly classified these classes in terms of precision and recall. Class 1 

performed somewhat worse than the other classes and had precision and recall at 0.94. 

 

Table 4.4 Precision, recall, and F1-score using VGG16 with 80% of images for 

training and 20% for testing 

       Result 

  

Real 

class 

precision recall F1-score support 

Class 0 0.98 0.96 0.97 49 

Class 1 0.94 0.94 0.94 53 

Class 2 0.95 0.97 0.96 39 

Class 3 1.00 1.00 1.0 30 

Class 4 1.00 0.96 0.98 26 

Class 5 0.96 0.96 0.96 25 

Class 6 0.97 1.00 0.99 36 

Macro avg 0.971 0.971 0.971 258 

Weight avg 0.92 0.971 0.972 258 

 

The results showed that MobileNet stands out with the highest accuracy of 

98.45%, making it the best-performing model and particularly suitable for classifying 

banana ripeness. The accuracy of VGG16 and CNN is 96.82% and 95.79%, respectively, 

both showing strong classification ability, but their efficiency was slightly lower than 

MobileNet. Despite ResNet50's power, its performance was relatively low at 92.43%, 

suggesting that it may not have received the same optimization for this specific task as 

other models. Table 4.5 compares the performance of MobileNet, ResNet50, CNN, and 

VGG16 classifiers with 80% of images for training. 
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Table 4.5 Accuracy when using MobileNet, ResNet50, CNN, and VGG16 to classify 

banana ripeness  

Classification Method Accuracy 

MobileNet 98.45% 

ResNet50 92.43% 

CNN 95.79% 

VGG16 97.10% 

 

 When 70% of the images were used for training and 30% for testing, 

MobileNet achieved an accuracy of 93.90%, which still outperformed ResNet50 and 

CNN. However, when the training data was increased to 80% and the testing data 

reduced to 20%, the accuracy of MobileNet significantly improved to 98.45% (Chen & 

Phoophuangpairoj, 2024). Future research will necessitate more training and testing 

photos to gain a better understanding of the accuracy obtainable with each method.  

 

4.2 Predicting the Internal Properties of Bananas Using Softmax Values  

 

 This section of the chapter discussed in detail the use of classification results 

obtained from the Softmax layer to determine the internal characteristics of bananas. 

The Brix and pH values were measured from 12, 11, 13, 11, 13, 10, and 10 bananas of 

class 0 to class 6, respectively, for the Brix and pH prediction. In the prediction process, 

the output values of the Softmax layer were used as features to predict the Brix and pH 

values of bananas using linear regression, SVR, and KNN, respectively.  

 

4.2.1 Use Linear Regression to Predict the Brix Values  

 

The following equation was the equation obtained from applying the linear 

regression to predict Brix values: 
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PredictedBrixvalue=(Softmax0*-16.99)+(Softmax1*-14.49)+(Softmax2*-

8.148)+(Softmax3*-3.196)+(Softmax4*-0.2)+(Softmax5*2.592)+(Softmax6*-

0.867)+20.264 

 

 

(4-1) 

 

According to literature, if the R2 value is between 0.3 and 0.5, it usually 

indicates a weak or low effect size. If the R² value is between 0.5 and 0.7, it is considered 

to have a moderate effect size and display considerable explanatory power. A value of 

R² higher than 0.7 is usually considered a strong effect size, indicating that a significant 

portion of the variability in the dependent variable can be explained by the model 

(Minitab Blog Editor, 2013). Linear regression was conducted with softmax and Brix 

values, yielding an R² of 0.958, signifying that the equation could reliably forecast the 

outcomes. 

 

Table 4.6 displays the absolute error, standard deviation, relative error, and 

percentage error for each banana class when using the linear regression model for Brix 

prediction. In terms of absolute, relative, and percentage errors, the model had relatively 

good prediction performance, as indicated by the minimum errors between Class 0 and 

class 6. However, class 2 showed a high error rate, indicating that the Brix values were 

still relatively difficult to predict using linear regression. 

 

Table 4.6 Brix prediction errors when using linear regression 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 
error 

0.1679 0.7340 2.1577 1.0635 0.7462 0.9246 0.5078 0.9113 

Standard 

deviation 
0.1112 0.3971 2.1491 0.9728 0.5430 0.6538 0.0205 1.1258 

Relative 
error 

0.0502 0.1516 0.2105 0.0641 0.0358 0.0418 0.0418 0.0842 

Standard 

deviation 
0.0328 0.0912 0.2278 0.0626 0.0246 0.0299 0.0205 0.1165 

Percentage 
error 

5.0200 15.1634 21.0536 6.4111 3.5787 4.1797 2.6290 8.4182 

Standard 

deviation 
3.2808 9.1199 22.7832 6.2596 2.4558 2.9908 2.0487 11.6491 
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Figure 4.5 shows the results of using linear regression to predict the Brix value 

based on softmax values. The obtained R² value was 0.958, indicating a correlation 

between the measured and predicted values. But there were obvious errors found in the 

bananas numbered 23, 24, 25, 28, and 41. 

 

 

Figure 4.5 Graphs of measured and predicted Brix values when using linear regression 

 

4.2.2 Use Linear Regression to Predict pH 

 

The following equation was the equation obtained from applying the linear 

regression to predict pH values: 

 

PredictedpHvalue=(Softmax0*-0.723)+(Softmax1*-0.418)+(Softmax2*-

0.261)+(Softmax3*-0.190)+(Softmax4*-0.002)+(Softmax5*0.194)+(Softmax 

6*-0.562)+4.771 

 

 

 

(4-2) 

 

Linear regression was performed using softmax and pH values, with an R2 of 

0.929, indicating that the equation can accurately predict the results. 

 

Table 4.7 shows the pH prediction errors when using linear regression. The 

absolute error, relative error, and percentage error of all classes were 0.0861, 0.0189, 

and 1.8868, respectively. The results revealed that certain classes, including class 0 and 
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class 6, exhibited high errors, suggesting that the model was still unable to provide 

accurate predictions. 

 

Table 4.7 pH prediction errors when using linear regression 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.1501 0.0589 0.0511 0.0935 0.0618 0.0865 0.1031 0.0861 

Standard 
deviation 

0.0692 0.0431 0.0467 0.0549 0.0515 0.0718 0.0144 0.0661 

Relative 

error 
0.0370 0.0135 0.0113 0.0204 0.0128 0.0175 0.0175 0.0189 

Standard 
deviation 

0.0172 0.0097 0.0103 0.0122 0.0103 0.0145 0.0144 0.0148 

Percentage 

error 
3.6995 1.3530 1.1332 2.0416 1.2768 1.7496 1.9186 1.8868 

Standard 
deviation 

1.7154 0.9745 1.0275 1.2168 1.0307 1.4531 1.4377 1.4849 

 

Figure 4.6 shows the measured and predicted pH values under the linear 

regression model, with red diamonds representing measured values and blue dots 

representing predicted values. There was a significant deviation between the predicted 

values and the measured values, such as the values numbered 6 through 11, where the 

errors were high. 

  

 

Figure 4.6 Measured and predicted pH values when using linear regression 
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4.2.3 Use SVR to Predict Brix and pH Values 

 

The study applied support vector regression (SVR) models to predict the Brix 

and pH values of bananas using the MobileNet Softmax values. To make predictions 

more accurate, the researcher compared the performance of three SVR kernel functions: 

the polynomial kernel function, the radial basis kernel function, and the linear kernel 

function. 

  

 4.2.3.1 Use SVR (polynomial kernel) to Predict Brix Values 

 

 Table 4.8 displays the errors in predicting Brix values using the SVR 

(polynomial kernel). An interesting finding was that the SVR (polynomial kernel) was 

not very good at predicting Brix values. This was especially true for some classes of 

bananas, like class 1, class 2, class 4, and class 5. 

 

Table 4.8 Brix prediction errors when using SVR (polynomial kernel) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
1.0734 1.5962 1.9812 0.6373 1.5467 1.8926 0.5986 1.3203 

Standard 
deviation 

1.2485 0.9649 2.3929 0.6863 1.0435 1.3898 0.0180 1.3614 

Relative 

error 
0.3172 0.2903 0.2003 0.0368 0.0740 0.0856 0.0856 0.1491 

Standard 
deviation 

0.3817 0.1480 0.2716 0.0411 0.0469 0.0626 0.0180 0.2169 

Percentage 

error 
31.7249 29.0282 20.0314 3.6774 7.4021 8.5563 3.0993 14.9052 

Standard 
deviation 

38.1668 14.8023 27.1575 4.1147 4.6904 6.2618 1.8003 21.6909 

 

 Figure 4.7 illustrates the results of employing SVR with a polynomial 

kernel to predict the Brix values of bananas. The R² value of the model was 0.925, 

signifying that the SVR model could elucidate about 92.5% of the Brix value. 

Nevertheless, there were considerable variations and discrepancies between the 

predicted and measured values. 

 



 
 

44 

 
Figure 4.7 Graphs measured and predicted Brix values when using SVR with a 

polynomial kernel 

 

 4.2.3.2 Use SVR (polynomial) to Predict pH Values 

 

 Table 4.9 presents a summary of the errors associated with the use of 

the SVR (polynomial kernel) model for pH prediction. Although the relative error and 

percentage error are generally low, specific classes, such as class 0 and class 6, still 

exhibited rather large error values. This indicates that the model had difficulty capturing 

changes in the pH values. 

 

Table 4.9 pH prediction errors when using SVR (polynomial kernel) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.1538  0.0677  0.0605  0.0772  0.0715  0.0853  0.1089  0.0888  

Standard 

deviation 
0.0993  0.0455  0.0432  0.0580  0.0553  0.0723  0.0160  0.0725  

Relative 
error 

0.0382  0.0156  0.0135  0.0168  0.0148  0.0171  0.0171  0.0195  

Standard 

deviation 
0.0259  0.0106  0.0096  0.0128  0.0111  0.0145  0.0160  0.0167  

Percentage 

error 
3.8177  1.5602  1.3476  1.6802  1.4754  1.7092  2.0196  1.9468  

Standard 

deviation 
2.5896  1.0571  0.9617  1.2767  1.1076  1.4498  1.5964  1.6744  
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 Figure 4.8 illustrates the results of using SVR (polynomial kernel) to 

predict banana pH values. Although the overall trend was consistent, there were some 

deviations between the predicted values and the measured values at certain data points 

(such as the values numbered 6 through 9). The R² value is 0.914, indicating that the 

SVR polynomial kernel model could explain 91.4% of pH changes. 

 

 
Figure 4.8 Graphs of measured and predicted pH values when using SVR with a 

polynomial kernel 

 

 4.2.3.3 Use SVR with RBF Kernel to Predict Brix Values 

 

 Table 4.10 shows the prediction error for Brix values using the SVR 

with an RBF kernel. Although the average error is within an acceptable range, some 

classes, such as class 2 and class 5, had poor prediction performance. 

 

Table 4.10 Brix prediction errors when using SVR with an RBF kernel 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.8231  1.1310  1.8004  0.5300  0.9920  1.9357  0.6667  1.0975  

Standard 

deviation 
0.2414  0.9482  2.5407  0.7044  0.9411  1.2025  0.0200  1.2811  

Relative 

error 
0.2395  0.1984  0.1857  0.0312  0.0460  0.0863  0.0863  0.1176  

 



 
 

46 

Table 4.10 Brix prediction errors when using SVR with an RBF kernel (continued) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Standard 
deviation 

0.0608  0.1166  0.2834  0.0439  0.0420  0.0495  0.0200  0.1456  

Percentage 

error 
23.9511  19.8419  18.5736  3.1178  4.6018  8.6262  3.4149  11.7587  

Standard 
deviation 

6.0790  11.6611  28.3384  4.3870  4.2002  4.9497  1.9973  14.5635  

  

 Figure 4.9 shows the results of using the SVR with a radial basis 

kernel to predict banana Brix values. This figure shows the comparison between the 

actual measured Brix values and the predicted Brix values. Although the overall trend 

is consistent, there is still a certain degree of fluctuation and error at certain data points 

(such as the values numbered 22 through 24 and those numbered 56 through 66). The 

R² value was 0.941, indicating that the model could explain 94.1% of the Brix value 

variation. 

 

 
Figure 4.9 Graphs of measured and predicted Brix values when using SVR  

with an RBF kernel 

 

 4.2.3.4 Use SVR with RBF kernel to predict pH values 

 

 Table 4.11 displays the prediction errors of pH values using an RBF-

kernel SVR. The average absolute error of all classes was 0.0860, indicating rather low 
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errors. However, the error of class 0 was relatively high, suggesting that enhancements 

in its prediction are necessary. 

 

Table 4.11 pH prediction errors when using SVR with an RBF kernel 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.1468  0.0666  0.0565  0.0786  0.0722  0.0736  0.1084  0.0860  

Standard 
deviation 

0.0601  0.0410  0.0422  0.0579  0.0525  0.0630  0.0157  0.0635  

Relative 

error 
0.0362  0.0154  0.0126  0.0171  0.0150  0.0147  0.0147  0.0188  

Standard 
deviation 

0.0156  0.0095  0.0094  0.0127  0.0107  0.0126  0.0157  0.0142  

Percentage 

error 
3.6177  1.5359  1.2572  1.7068  1.4963  1.4730  2.0091  1.8798  

Standard 
deviation 

1.5593  0.9539  0.9377  1.2695  1.0665  1.2604  1.5677  1.4209  

 

 The results of predicting banana pH using SVR with a radial basis 

kernel were displayed in Figure 4.10. The overall error was low, although there were 

some deviations between the predicted and measured values at certain data points (such 

as the values numbered 2, 9, 74, and 76). The R² value is 0.926, indicating that the SVR 

polynomial kernel model can explain approximately 92.6% of pH variation. 

 

 
Figure 4.10 Graphs of measured and predicted pH values when using SVR  

with a radial kernel 
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 4.2.3.5 Use SVR with a Linear Kernel to Predict Brix values 

 

 Table 4.12 shows the prediction error of Brix values using the SVR 

with a linear kernel. The prediction of Brix values when using SVR linear regression 

performed quite well in some classes (such as class 0), with small errors. However, the 

error in Class 2 was significantly high.  The absolute error of all classes was 0.8413. 

The relative and percentage errors of all classes were 0.0741 and 7.4115, respectively. 

 

Table 4.12 Brix prediction errors when using SVR with a linear kernel 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 
error 

0.2048  0.7045  1.9172  0.7372  0.7206  1.0420  0.5764  0.8413  

Standard 

deviation 
0.1504  0.9971  2.6583  0.7181  0.7551  0.7408  0.0209  1.2683  

Relative 
error 

0.0573  0.1082  0.1940  0.0426  0.0339  0.0475  0.0475  0.0741  

Standard 

deviation 
0.0348  0.1016  0.2864  0.0435  0.0344  0.0341  0.0209  0.1291  

Percentage 
error 

5.7268  10.8177  19.4040  4.2605  3.3936  4.7455  3.0144  7.4115  

Standard 

deviation 
3.4774  10.1582  28.6419  4.3479  3.4441  3.4099  2.0945  12.9137  

 

 Figure 4.11 shows the comparison of measured and predicted Brix 

values for bananas using the SVR with a linear kernel. The R2 value was 0.952, which 

was higher than using the polynomial kernel and the RBF kernel. The measured values 

(green dots) and predicted values (blue dots) were close to each other but had high errors 

in some areas, especially around banana samples 22-24. 
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Figure 4.11 Graphs of measured and predicted Brix values when using SVR  

with a linear kernel 

 

 4.2.3.6 Use SVR with a Linear Regression to Predict pH Values 

 

 Table 4.13 shows the prediction error for pH values using the SVR 

with a linear kernel.  The overall absolute error of the SVR for pH value was 0.0891. 

The relative and percentage errors were 0.0195 and 1.9490, respectively.  

 

Table 4.13 pH prediction errors when using SVR with a linear kernel 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.1480  0.0623  0.0571  0.0984  0.0725  0.0778  0.1063  0.0891  

Standard 

deviation 
0.0690  0.0405  0.0428  0.0600  0.0522  0.0614  0.0147  0.0642  

Relative 

error 
0.0365  0.0143  0.0127  0.0214  0.0150  0.0155  0.0155  0.0195  

Standard 

deviation 
0.0179  0.0093  0.0095  0.0133  0.0106  0.0123  0.0147  0.0146  

Percentage 

error 
3.6516  1.4328  1.2702  2.1401  1.5016  1.5529  1.9776  1.9490  

Standard 

deviation 
1.7907  0.9320  0.9522  1.3282  1.0587  1.2282  1.4682  1.4573  

 

The results of using SVR with a linear kernel to predict the pH values from the 

softmax values are displayed in Figure 4.12, where the horizontal axis displays the 
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banana sample numbers and the vertical axis displays the pH values. The red diamonds 

represented the measured values, and the blue dots represented the predicted values. The 

R2 value was 0.922, which is lower than the RBF kernel. 

 

 
Figure 4.12. Graphs of measured and predicted pH values when using SVR  

with a linear kernel 

 

4.2.4 Use KNN to Predict Brix and pH Values  

 

In this section, the KNN algorithm was used to predict the Brix and pH values 

of bananas from the seven softmax features. 

 

 4.2.4.1 Use KNN (k=3) to Predict Brix Values 

 

 Table 4.14 summarizes the Brix value prediction errors for KNN with 

k=3, with an overall percentage error of 3.4084%, reflecting reliable performance. Most 

classes, especially Class 4, exhibit high accuracy with minimal percentage errors (as 

low as 0.9372%) and consistent predicted, as indicated by small standard deviations in 

absolute and percentage errors. 
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Table 4.14 Brix values prediction errors when using KNN (k=3) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 
error 

0.0850  0.2040  1.1263  0.4431  0.1958  0.3756  0.3036  0.3938  

Standard 

deviation 
0.0645  0.1876  1.7052  0.4496  0.3692  0.4362  0.0138  0.7728  

Relative 
error 

0.0252  0.0342  0.1068  0.0258  0.0094  0.0168  0.0168  0.0341  

Standard 

deviation 
0.0200  0.0257  0.1540  0.0277  0.0175  0.0196  0.0138  0.0683  

Percentage 
error 

2.5161  3.4183  10.678  2.5805  0.9372  1.6804  1.5880  3.4084  

Standard 

deviation 
1.9986  2.5655  15.396  2.7660  1.7505  1.9562  1.3826  6.8306  

 

 Figure 4.13 shows the prediction of the Brix values from banana 

images using the KNN (k=3), where green dots represented the measured values and 

blue dots represented the predicted values. The trend of the two curves was basically 

consistent. The R2 value of the model was 0.984, indicating a high correlation between 

the measured and predicted values. This revealed that the KNN (k=3) predictor 

exhibited high accuracy in predicting Brix values with small errors. 

 

 
Figure 4.13 Graphs of measured and predicted Brix values when using KNN (k=3) 
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 4.2.4.2 Use KNN (k=3) to Predict pH Values 

 

 Table 4.15 shows the error in predicting pH values using KNN (k=3). 

The prediction error at class 0 was highest. The absolute, relative, and percentage errors 

of all classes were 0.0335, 0.0072, and 0.721, respectively. Overall, the model performs 

the best in predicting pH values using the softmax values. 

 

Table 4.15 pH prediction errors when using KNN (k=3) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.0385  0.0173  0.0277  0.0445  0.0286  0.0256  0.0519  0.0335  

Standard 
deviation 

0.0355  0.0231  0.0264  0.0515  0.0414  0.0265  0.0102  0.0393  

Relative 

error 
0.0096  0.0040  0.0061  0.0098  0.0058  0.0051  0.0051  0.0072  

Standard 
deviation 

0.0091  0.0052  0.0057  0.0115  0.0084  0.0053  0.0102  0.0084  

Percentage 

error 
0.9576  0.3958  0.6106  0.9789  0.5845  0.5111  0.9637  0.7217  

Standard 
deviation 

0.9082  0.5232  0.5691  1.1549  0.8419  0.5302  1.0172  0.8383  

 

 The graphs in Figure 4.14 show the measured and predicted values 

when using the KNN (k=3) to predict the pH values of bananas. The R2 value of the 

model was 0.972, which was higher than the R2 values of SVR and linear regression. 

This indicated that the KNN (k=3) performed better than SVR and linear regression in 

predicting pH values, with the errors smaller than SVR and linear regression. 
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Figure 4.14 Graphs of measured and predicted pH values when using KNN (k=3) 

 

 4.2.5 Summarize the R2 results of Brix Values using Different Methods 

when using Softmax Values 

 

 Table 4.16 compares the predictive performance of different models for Brix 

values using softmax features. Linear regression showed an R² value of 0.958. SVR 

models demonstrated varying performance, with the linear kernel performing best (R² = 

0.952), followed by the radial basis kernel (R² = 0.941) and the polynomial kernel (R² 

= 0.925). KNN had the highest predictive accuracy, with k=3 achieving the best R² value 

of 0.984, followed by k=5 (R² = 0.966) and k=7 (R² = 0.952). KNN outperformed other 

methods overall. 

 

Table 4.16 R2 results when using different methods to predict Brix values 

Features Methods R2 

Softmax values Linear regression 0.958 

Softmax values SVR (linear) 0.952 

Softmax values SVR (polynomial) 0.925 

Softmax values SVR (radial basis function) 0.941 

Softmax values KNN (k=3) 0.984 

Softmax values KNN (k=5) 0.966 

Softmax values KNN (k=7) 0.952 

 

When predicting pH values using different methods, Table 4.17 shows the R² 

values. It also compares how well different models did with the softmax features. KNN 
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showed the best performance, with R² values of 0.972 (k=3), 0.9412 (k=5), and 0.921 

(k=7). Linear regression ranked second, with an R² value of 0.925. Among SVR models, 

the radial basis kernel performed best (R² = 0.926), slightly surpassing linear regression, 

while the linear and polynomial kernels achieved R² values of 0.921 and 0.914, 

respectively. Overall, KNN demonstrated the highest accuracy, making it the most 

effective model for predicting pH values. 

 

Table 4.17 R2 results when using different methods to predict pH values  

Features Methods R2 

Softmax values Linear regression 0.925 

Softmax values SVR (linear) 0.922 

Softmax values SVR (polynomial) 0.914 

Softmax values SVR (radial basis function) 0.926 

Softmax values KNN (k=3) 0.972 

Softmax values KNN (k=5) 0.941 

Softmax values KNN (k=7) 0.921 

 

4.3 Predicting the Internal Properties of Bananas using RGB and 

L*a*b* Color Values Measured from One Point 

 

This section further examined the relationships between the RGB and L*a*b* 

color values of bananas and their Brix and pH measurements. RGB and L*a*b* color 

values served as feature variables to predict Brix and pH values utilizing linear 

regression, SVR, and KNN models. The Brix and pH values were measured for 12, 11, 

13, 11, 13, 10, and 10 bananas of class 0 to class 6, respectively, for the Brix and pH 

prediction. 

 

4.3.1 Comparison of Different Methods for Predicting Brix Values Using 

RGB Color Features 

 

Table 4.18 compares the R² squared values of different methods for predicting 

Brix values using RGB color features. Among these methods, KNN (k=3) had the 

highest R² value (0.943), indicating that its predictive performance was superior to other 
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methods. Linear regression and SVR (linear kernel) also showed relatively good 

performance, with R² values of 0.853 and 0.778, respectively. In contrast, the prediction 

accuracy of SVR (polynomial kernel) and SVR (radial basis kernel) were lower, with 

R² values of 0.475 and 0.585, respectively.  

 

Based on these results, subsequent analysis will focus on errors related to linear 

regression, SVR (linear kernel), and KNN (k=3), as well as their corresponding 

measurements and predictions of Brix values. 

 

Table 4.18 R2 values of different methods for predicting Brix values using RGB color  

                  features 

Features Methods R2 

RGB values Linear regression 0.853 

RGB values SVR (linear) 0.778 

RGB values SVR (polynomial) 0.475 

RGB values SVR (radial basis function) 0.585 

RGB values KNN (k=3) 0.943 

RGB values KNN (k=5) 0.892 

RGB values KNN (k=7) 0.826 

 

 4.3.1.1 Use Linear Regression to Predict Brix Based on RGB Values 

 

 The equation to predict Brix values derived from the linear regression 

analysis was as follows: 

 

PredictedBrixvalue=(R*0.422)+(G*-0.425)+(B*0.002)+6.542 (4-3) 

 

 Table 4.19 shows the errors in predicting Brix value from RGB color 

values using the linear regression method. The absolute error, standard deviation, 

relative error, and percentage error for each banana class were reported. The overall 

absolute error, relative error, and percentage error were 2.1130, 0.2412, and 24.121, 

respectively. The percentage errors were relatively high in class 0 and class 1. 
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Table 4.19 Errors when using linear regression to predict Brix values from RGB color  

                  values 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
1.6610  2.5439  3.1418  2.4058  1.2216  1.6570  2.1353  2.1130  

Standard 
deviation 

1.8442  2.2830  1.5834  1.3231  0.9690  1.4066  0.0836  1.6720  

Relative 

error 
0.4859  0.5225  0.2787  0.1431  0.0588  0.0736  0.0736  0.2412  

Standard 

deviation 
0.5330  0.4885  0.1768  0.0862  0.0452  0.0593  0.0836  0.3309  

Percentage 

error 
48.588  52.245  27.867  14.314  5.8755  7.3641  10.880  24.121  

Standard 
deviation 

53.304  48.851  17.684  8.6217  4.5204  5.9324  8.3595  33.093  

 

 Figure 4.15 shows the comparison between the measured Brix values 

(green dots) of banana samples and the Brix values predicted using a linear regression 

model (blue dots). The figure reveals significant fluctuations in the predicted values, 

highlighting the limitations of the linear regression model's prediction capabilities. 

 

 

Figure 4.15 Graphs of measured and predicted Brix values when using  

linear regression 
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 4.3.1.2 Use SVR (linear kernel) to Predict Brix Based on RGB Values 

  

 The errors of using SVR (linear kernel) to predict Brix values from 

RGB color values were displayed in Table 4.20. The overall absolute error, relative 

error, and percentage error were 2.5509, 0.3871, and 38.713, respectively. The high 

average percentage error indicated significant errors in the prediction. Its performance 

was inferior to that of alternative approaches such as KNN. 

 

Table 4.20 Errors when using SVR (linear kernel) to predict Brix values from RGB  

                  color values 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 
error 

4.2031  4.4611  2.3536  1.6375  0.7566  2.1883  2.5501  2.5509  

Standard 

deviation 
1.3982  2.5289  1.9818  1.0046  0.7665  1.2388  0.1136  2.0545  

Relative 
error 

1.2137  0.8876  0.2287  0.0945  0.0358  0.1001  0.1001  0.3871  

Standard 

deviation 
0.3598  0.5614  0.2541  0.0621  0.0353  0.0530  0.1136  0.5138  

Percentage 
error 

121.36  88.762  22.868  9.4521  3.5816  10.007  13.040  38.713  

Standard 

deviation 
35.984  56.135  25.412  6.2055  3.5323  5.3034  11.357  51.384  

 

 The predicted Brix values from the SVR (linear kernel) model were 

very different from the measured Brix values in a number of ranges, as shown in Figure 

4.16. These ranges included the bananas numbered 1–22 and 74–77. 
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Figure 4.16 Graphs of measured and predicted Brix values when using SVR  

(linear kernel) 

 

  4.3.1.3 Use KNN (k=3) to Predict Brix Based on RGB Values 

 

 Table 4.21 shows the error of using the KNN (k=3) model to predict 

Brix values based on RGB color values. The overall absolute error was 1.1894, and the 

standard deviation was 1.1661, indicating that the model has a small prediction error. 

The KNN (k=3) model exhibited lower prediction errors in all categories, and its 

performance was superior to the linear regression and SVR methods. 

 

Table 4.21 Errors when using KNN (k=3) to predict Brix values from RGB color values 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
0.4506  2.0133  1.4731  1.1236  0.9544  1.2959  1.1246  1.1894  

Standard 

deviation 
0.7006  1.5123  1.5051  0.4744  0.5942  1.2873  0.0727  1.1661  

Relative 
error 

0.1280  0.3707  0.1400  0.0644  0.0459  0.0579  0.0579  0.1229  

Standard 

deviation 
0.2002  0.3105  0.1709  0.0284  0.0280  0.0579  0.0727  0.1849  

Percentage 

error 
12.801  37.070  13.997  6.4431  4.5857  5.7919  5.8363  12.290  

Standard 

deviation 
20.016  31.045  17.088  2.8419  2.8044  5.7920  7.2668  18.486  
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 Figure 4.17 shows the comparison between the predicted Brix value 

and the measured value of the KNN (k=3) model. The graphs revealed a relatively high 

degree of matching between the predicted and measured values.  

 

 

Figure 4.17 Graphs of measured and predicted Brix values when using KNN (k=3) 

 

 4.3.2 Comparison of Different Methods for Predicting pH Values Using 

RGB Color Values Measured from One Point 

 

Table 4.22 compares the R2 values of different methods for predicting pH 

values using RGB color values measured from one point. Among linear regression, SVR, 

and KNN, KNN (k=3) achieved the highest R² value (0.896), demonstrating its superior 

pH predictive performance compared to other methods. SVR (radial basis kernel) and 

KNN (k=5) also showed relatively high performance, with R² values of 0.829 and 0.823, 

respectively. Linear regression and SVR (linear kernel) had moderate performance, with 

R² values of 0.761 and 0.750, respectively. In contrast, the prediction accuracies of SVR 

(polynomial kernel) and KNN (k=7) were lower, with R² values of 0.571 and 0.706, 

respectively.  

 

Based on these results, subsequent analysis will focus on the prediction errors 

related to linear regression, KNN (k=3), and SVR (radial basis function kernel).  
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Table 4.22 R2 Values of Different Methods for Predicting pH Values Using RGB  

  Color Values from One Point 

Features Methods R2 

RGB values Linear regression 0.761 

RGB values SVR (linear) 0.750 

RGB values SVR (polynomial) 0.571 

RGB values SVR (radial basis function) 0.829 

RGB values KNN (k=3) 0.896 

RGB values KNN (k=5) 0.823 

RGB values KNN (k=7) 0.706 

 

 4.3.2.1 Use Linear Regression to Predict pH Based on RGB Values 

Measured from One Point 

 

 The equation to predict a pH value derived from the linear regression 

was as follows: 

pH value=(R*0.021)+(G*-0.029)+(B*0.004)+5.166 (4-4) 

 

 Table 4.23 shows the errors when using linear regression to predict 

pH values from RGB color features. The overall absolute error across all classes was 

0.158, with the lowest absolute error for class 1 (0.0954) and the highest for class 0 

(0.2705). Overall, the prediction accuracy of linear regression was moderate. 

 

Table 4.23 Errors when using linear regression to predict pH values from RGB color  

  values measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
0.2705  0.0954  0.1344  0.1568  0.0977  0.1444  0.2127  0.1580  

Standard 
deviation 

0.1537  0.0760  0.0823  0.1577  0.0708  0.0577  0.0290  0.1282  

Relative 

error 
0.0677  0.0221  0.0297  0.0345  0.0206  0.0292  0.0292  0.0348  
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Table 4.23 Errors when using linear regression to predict pH values from RGB color  

  values measured from one point (continued) 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Standard 

deviation 
0.0395  0.0178  0.0181  0.0351  0.0151  0.0121  0.0290  0.0294  

Percentage 
error 

6.7682  2.2057  2.9730  3.4511  2.0625  2.9164  3.9333  3.4802  

Standard 

deviation 
3.9517  1.7828  1.8050  3.5064  1.5066  1.2066  2.8966  2.9405  

 

 The graphs of measured and predicted pH values based on RGB color 

values when employing linear regression were displayed in Figure 4.18. The R2 value 

was 0.761, indicating that the predicted pH values were rather different from those that 

were measured. 

 

 

Figure 4.18 Graphs of measured and predicted pH values from RGB color 

values when using linear regression 

 

 4.3.2.2 Use SVR (Radial Basis Kernel) to Predict pH Based on RGB 

Values Measured from One Point 

 

 Table 4.24 summarizes the errors when using SVR with an radial basis 

kernel to predict pH values. The overall absolute error was 0.1237, which was lower 
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compared to that of linear regression. Class 2 had the lowest absolute error (0.0850) 

among all classes, while class 0 had a slightly higher error (0.1711). The results 

suggested that the SVR (radial basis kernel) provided a better prediction than the linear 

regression. 

 

Table 4.24 Errors when using SVR (radial basis kernel) to predict pH values from  

  RGB color values 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
0.1711  0.1131  0.0850  0.1208  0.0738  0.1349  0.1832  0.1237  

Standard 

deviation 
0.1244  0.0754  0.0574  0.0941  0.0512  0.0992  0.0294  0.1032  

Relative 

error 
0.0426  0.0260  0.0188  0.0265  0.0152  0.0270  0.0270  0.0268  

Standard 

deviation 
0.0316  0.0176  0.0125  0.0210  0.0101  0.0198  0.0294  0.0223  

Percentage 

error 
4.2583  2.6035  1.8837  2.6491  1.5225  2.6989  3.3854  2.6840  

Standard 

deviation 
3.1600  1.7566  1.2543  2.1035  1.0109  1.9773  2.9429  2.2292  

 

 Figure 4.19 shows measured and predicted pH values based on RGB 

color values when using the SVR (radial basis kernel). The R2 value was 0.829, better 

than the linear regression performance.  
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Figure 4.19 Graphs of measured and predicted pH values when using SVR 

(radial basis kernel) 

 

 4.3.2.3 Use KNN (k=3) to Predict pH Based on RGB Values 

Measured from One Point 

 

 Table 4.25 presents the errors when using KNN (k=3) to predict pH 

values. The overall absolute error was the lowest among the three methods at 0.0885, 

with a standard deviation of 0.0895. This method significantly outperformed both linear 

regression and SVR (radial basis kernel). This demonstrated that KNN (k=3) was the 

most accurate method for predicting pH values based on RGB color values measured 

from one point. 

 

Table 4.25 Errors when using KNN (k=3) to predict pH values from RGB color values  

  measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
0.0964  0.1424  0.0489  0.0715  0.0733  0.0978  0.1008  0.0885  

Standard 

deviation 
0.1020  0.0902  0.0371  0.0502  0.0973  0.0715  0.0249  0.0895  

Relative 

error 
0.0243  0.0329  0.0108  0.0156  0.0150  0.0196  0.0196  0.0193  
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Table 4.25 Errors when using KNN (k=3) to predict pH values from RGB color values  

  measured from one point (continued) 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Standard 

deviation 
0.0261  0.0214  0.0082  0.0109  0.0194  0.0143  0.0249  0.0193  

Percentage 

error 
2.4291  3.2895  1.0827  1.5561  1.5018  1.9589  1.8449  1.9270  

Standard 

deviation 
2.6076  2.1371  0.8174  1.0893  1.9385  1.4269  2.4886  1.9337  

 

 Figure 4.20 shows measured and predicted pH values based on RGB 

color values when using KNN (k=3). The R2 value was 0.896, better than linear 

regression and SVR performance. Overall, the predicted values and measured values 

were very similar, although there were some small errors.  

 

 
Figure 4.20 Graphs of measured and predicted pH values when using KNN (k=3) 
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4.3.3 Comparison of Different Methods for Predicting Brix Values Using 

L*a*b* Color Values Measured from One Point 

 

Table 4.26 compares the R2 values of different methods for predicting Brix 

values using L*a*b* color features. Among these methods, KNN (k=3) achieved the 

highest R² value (0.941), demonstrating its superior predictive performance compared 

to other methods. KNN (k=5) and KNN (k=7) also showed relatively good performance, 

with R² values of 0.864 and 0.844, respectively. SVR (radial basis function) performed 

moderately well, achieving an R² value of 0.775. In contrast, the performance of linear 

regression and SVR (linear kernel) was lower, with R² values of 0.668 and 0.641, 

respectively. SVR (polynomial kernel) showed the lowest prediction performance, with 

an R² value of 0.461. 

 

 Based on these results, subsequent analysis will focus on errors related to 

linear regression, KNN (k=3), and SVR (radial basis kernel). 

 

Table.4.26 R2 values of different methods for predicting Brix values using L*a*b*  

  color values measured from one point 

Features Methods R2 

L*a*b* values Linear regression 0.668 

L*a*b* values SVR (linear) 0.641 

L*a*b* values SVR (polynomial) 0.461 

L*a*b* values SVR (radial basis function) 0.775 

L*a*b* values KNN (k=3) 0.941 

L*a*b* values KNN (k=5) 0.864 

L*a*b* values KNN (k=7) 0.844 

 

 4.3.3.1 Use Linear Regression to Predict Brix Based on L*a*b* Values 

 

 The equation to predict a Brix value derived from the application of 

linear regression was as follows: 
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Brix value=(L*0.112)+(a*0.84)+(b*0.16)+2.038 (4-5) 

 

 Table 4.27 shows the error of linear regression in predicting the Brix 

values of different banana classes. The average absolute error for all categories was 

3.3178, with a standard deviation of 3.0969, indicating relatively high variability. The 

very high relative error of 0.3676 and the percentage errors of 36.764 indicated the poor 

performance of the linear regression in predicting Brix values. 

 

Table 4.27 Errors when using linear regression to predict Brix values from L*a*b*  

  color values measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
3.8610  1.5588  2.7171  3.3790  3.2013  4.2360  4.5675  3.3178  

Standard 

deviation 
6.5831  1.5934  1.5155  2.1011  1.4735  1.9026  0.1246  3.0969  

Relative 

error 
1.2004  0.3181  0.2344  0.2003  0.1569  0.1902  0.1902  0.3676  

Standard 

deviation 
2.0683  0.3408  0.1261  0.1323  0.0693  0.0809  0.1246  0.8629  

Percentage 

error 
120.03  31.810  23.444  20.032  15.690  19.017  23.391  36.764 

Standard 

deviation 
206.83  34.080 12.607  13.228  6.9271  8.0946  12.456  86.286  

 

 Figure 4.21 shows the comparison between the predicted Brix values 

and the measured values of the linear regression model. The graphs showed a relatively 

low degree of matching between predicted and measured values, with an R² value of 

0.668. 
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Figure 4.21 Graphs of measured and predicted Brix values when using  

linear regression 

 

 4.3.3.2 Use SVR (radial basis kernel) to Predict Brix Based on L*a*b* 

Values 

 

 Table 4.28 shows that compared to linear regression, SVR with an 

RBF kernel exhibited a lower overall error but still had a high absolute error in certain 

classes, like class 0 (4.5763) and class 1 (2.8650).  

 

Table 4.28 Errors when using SVR(rbf kernel) to predict Brix values from L*a*b*  

  color values measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 
error 

4.5763  2.8650  1.7674  1.4482  0.7751  1.8000  0.9705  2.0306  

Standard 

deviation 
5.0583  2.4167  1.4167  1.3364  0.8492  1.2283  0.0460  2.6004  

Relative 
error 

1.3858  0.5763  0.1413  0.0852  0.0359  0.0802  0.0802  0.3432  

Standard 

deviation 
1.6049  0.5221  0.1098  0.0814  0.0379  0.0516  0.0460  0.7878  

Percentage 
error 

138.57  57.630  14.130  8.5157  3.5874  8.0212  4.9617  34.319  

Standard 

deviation 
160.48  52.213  10.982  8.1396  3.7896  5.1634  4.6015  78.784  
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 Figure 4.22 shows the comparison between the predicted Brix value 

and the measured value of the SVR (radial basis kernel) model. The degree of matching 

between the predicted and measured values was higher than in linear regression, with 

an R-squared of 0.775 compared to an R2 of 0.668. The predicted and measured values 

exhibit significant errors prior to reaching the bananas numbered 45. 

 

 

Figure 4.22 Graphs of measured and predicted Brix values when using SVR  

(radial basis kernel) 

 

 4.3.3.3 Use KNN (k=3) to Predict Brix Based on L*a*b* Values 

 

 Table 4.29 shows the error in predicting Brix values from L*a*b* 

values using KNN (k=3). KNN (k=3) achieved the lowest error and best performance 

among all methods. The average absolute error for all categories was 1.2296, with a 

standard deviation of 1.1671, reflecting low error variability. The relative error and 

percentage error were 0.1416 and 14.163, respectively. 
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Table 4.29 Errors when using KNN (k=3) to predict Brix values from L*a*b* color   

  values measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
1.2806  1.2909  1.6117  1.2569  0.7979  1.8222  0.6346  1.2296  

Standard 
deviation 

1.9671  0.9795  1.0726  0.6358  0.7063  1.5184  0.0287  1.1671  

Relative 

error 
0.3845  0.2306  0.1377  0.0726  0.0380  0.0843  0.0843  0.1416  

Standard 

deviation 
0.6188  0.1608  0.0892  0.0376  0.0326  0.0740  0.0287  0.2705  

Percentage 

error 
38.445  23.060  13.766  7.2550  3.8031  8.4304  3.3244  14.163  

Standard 
deviation 

61.880  16.077  8.9191  3.7604  3.2587  7.3979  2.8730  27.054  

 

 Figure 4.23 shows the comparison between the predicted Brix values 

and the measured values when using KNN (k=3) and L*a*b* values. The graphs showed 

that the degree of matching between predicted and measured values was higher than that 

of linear regression and SVR, but there were significant deviations in data numbered 2, 

3, and 68. 

 

 

Figure 4.23 Graphs of measured and predicted Brix values when using KNN (k=3) 
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4.3.4 Comparison of Different Methods for Predicting pH Values Using 

L*a*b* Color Values 

 

Table 4.30 compares the R2 values of different methods of predicting pH values 

using L*a*b* color features. Among these methods, KNN (k=3) achieved the highest R² 

value (0.844), demonstrating its superior predictive performance compared to other 

methods. In contrast, linear regression, SVR (linear kernel), and SVR (polynomial kernel) 

showed lower performance, with R² values of 0.529, 0.495, and 0.482, respectively. 

 

Based on these results, subsequent analysis will focus on errors related to KNN 

(k=3), SVR (radial basis kernel), and linear regression, as they provided a range of 

performance levels suitable for understanding predictive performance. 

 

Table 4.30 R2 values of different methods for predicting pH Values Using L*a*b*  

  color values measured from one point 

Features Methods R2 

L*a*b* values Linear regression 0.529 

L*a*b* values SVR (linear) 0.495 

L*a*b* values SVR (polynomial) 0.482 

L*a*b* values SVR (radial basis function) 0.819 

L*a*b* values KNN (k=3) 0.844 

L*a*b* values KNN (k=5) 0.754 

L*a*b* values KNN (k=7) 0.667 

 

 4.3.4.1 Use Linear Regression to Predict pH Based on L*a*b* Values 

 

 The equation to predict pH values derived from the linear regression 

was as follows: 

pH value = (R*-0.007)+(G*0.041)+(B*-0.001)+5.154 (4-6) 

 

 Table 4.31 shows the errors in predicting pH values based on L*a*b* 

color values using linear regression. The average absolute error of all banana classes 

was 0.1564, with the lowest error found in class 4 (0.0565) and the highest error found 
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in class 6 (0.2520). This indicated that it was difficult to accurately predict using the 

linear regression.  

 

Table 4.31 Errors when using linear regression to predict pH values from L*a*b*  

                  color values measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 
error 

0.3913  0.0671  0.0855  0.1090  0.0565  0.1529  0.2520  0.1564  

Standard 

deviation 
0.4455  0.0656  0.0639  0.0808  0.0462  0.1010  0.0389  0.2234  

Relative 
error 

0.0996  0.0155  0.0190  0.0239  0.0116  0.0304  0.0304  0.0349  

Standard 

deviation 
0.1158  0.0154  0.0142  0.0183  0.0092  0.0199  0.0389  0.0553  

Percentage 
error 

9.9593  1.5525  1.8954  2.3905  1.1643  3.0419  4.6452  3.4922  

Standard 

deviation 
11.5783  1.5447  1.4227  1.8256  0.9158  1.9855  3.8927  5.5278  

 

 Figure 4.24 illustrates the measured and predicted pH values, derived 

from L*a*b* color values, through the use of linear regression. The R2 value was 0.529. 

The graphs clearly showed significant errors between the predicted and measured values 

for the bananas numbered 1-6 and 74-79. 

 

 

Figure 4.24 Graphs of measured and predicted pH values from L*a*b* color values 

when using linear regression 
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 4.3.4.2 Use SVR (radial basis kernel) to Predict pH Based on L*a*b* 

Values 

 

 Table 4.32 shows the error in predicting pH values based on L*a*b* 

color values using SVR (radial basis kernel). Compared with linear regression, SVR 

with an RBF kernel achieved better prediction accuracy. The average absolute error for 

all banana classes was 0.1071, with the lowest error found in class 4 (0.0541) and the 

highest error found in class 0 (0.1942). The standard deviation of absolute errors was 

0.1265, indicating that the prediction was more consistent compared to the linear 

regression. 

 

Table 4.32 Errors when using SVR (radial basis kernel) to predict pH values from   

  L*a*b* color values measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 
error 

0.1942  0.0796  0.0715  0.1054  0.0541  0.1503  0.1080  0.1071  

Standard 

deviation 
0.2552  0.0529  0.0596  0.0902  0.0511  0.1203  0.0157  0.1265  

Relative 

error 
0.0495  0.0183  0.0158  0.0231  0.0113  0.0296  0.0296  0.0237  

Standard 

deviation 
0.0666  0.0124  0.0131  0.0204  0.0106  0.0230  0.0157  0.0311  

Percentage 

error 
4.9454  1.8304  1.5837  2.3102  1.1272  2.9642  2.0033  2.3735  

Standard 

deviation 
6.6618  1.2427  1.3150  2.0397  1.0633  2.2999  1.5718  3.1129  

 

 Figure 4.25 illustrates the measured and predicted pH values, derived 

from L*a*b* color values, through the use of the SVR (radial basis kernel). The R2 value 

was 0.819, which was higher than linear regression. 

 



 
 

73 

Figure 4.25 Graphs of measured and predicted pH values when using SVR  

(radial basis kernel) 

 

 4.3.4.3 Use KNN (k=3) to Predict pH Based on L*a*b* Values 

 

 Table 4.33 shows the error in predicting pH values based on L*a*b* 

color values using KNN (k=3). The KNN (k=3) exhibited the best overall performance 

among the three methods. The average absolute error for all classes was 0.1011, with 

class 2 having the lowest error (0.0511) and class 5 having the highest error (0.2159). 

The standard deviation of absolute error was 0.1156, indicating that the prediction 

performance was quite consistent among all banana classes.  

 

Table 4.33 Errors when using KNN (k=3) to predict pH values from L*a*b* color  

  values measured from one point 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Absolute 

error 
0.1664  0.0691  0.0511  0.0641  0.0736  0.2159  0.0988  0.1011  

Standard 

deviation 
0.1647  0.0448  0.0423  0.0847  0.0573  0.1869  0.0162  0.1156  

Relative 

error 
0.0420  0.0158  0.0113  0.0142  0.0153  0.0425  0.0425  0.0220  
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Table 4.33 Errors when using KNN (k=3) to predict pH values from L*a*b* color  

  values measured from one point (continued) 

 class 0 class 1 class 2 class 3 class 4 class 5 class 6 
All 

classes 

Standard 

deviation 
0.0432  0.0103  0.0093  0.0191  0.0118  0.0354  0.0162  0.0259  

Percentage 

error 
4.2024  1.5849  1.1336  1.4157  1.5261  4.2528  1.8219  2.2025  

Standard 

deviation 
4.3193  1.0255  0.9345  1.9113  1.1799  3.5422  1.6234  2.5881  

 

 Figure 4.26 shows the measured and predicted pH values obtained 

from L*a*b* color values using KNN (k=3). The R2 value was 0.844, which was higher 

than SVR and linear regression but lower than using RGB to predict pH value. The 

graphs showed a high degree of matching between the predicted values and the 

measured values, with only the banana numbers 2, 3, and 78 showing significant errors. 

 

 
Figure 4.26 Graphs of measured and predicted pH values when using KNN (k=3) 
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4.4 Predicting the Internal Properties of Bananas using RGB and 

L*a*b* Color Values Measured from One Points  

 

This section further examined the relationships between the RGB and L*a*b* 

color values of bananas and their Brix and pH measurements. RGB and L*a*b* color 

values served as feature variables to predict Brix and pH values utilizing linear 

regression, SVR, and KNN. The Brix and pH values were measured for 12, 11, 13, 11, 

13, 10, and 10 bananas of class 0 to class 6, respectively, for the Brix and pH prediction. 

 

4.4.1 Comparison of Different Methods for Predicting Brix Values Using 

RGB and L*a*b* Color Features 

 

Table 4.34 compares the R² values of different methods for predicting Brix 

values using RGB and L*a*b* color features. Among the evaluated methods, KNN (k=3) 

demonstrated the highest predictive performance, achieving an R² value of 0.947, 

indicating its effectiveness in predicting Brix values. Linear regression and KNN (k=5) 

showed R² values of 0.873 and 0.869, respectively. In contrast, the SVR models 

exhibited varied performance. While SVR with a radial basis function kernel achieved 

a moderate R² value of 0.739, SVR with a linear kernel performed similarly at 0.739. 

SVR with a polynomial kernel, however, had the lowest predictive performance, with 

an R² value of 0.571. 

 

Based on these results, subsequent analysis will focus on the prediction errors 

related to KNN (k=3), linear regression, and SVR (radial basis function kernel). 

 

Table 4.34 R2 values of different methods for predicting brix values using RGB and  

  L*a*b* color features 

Features Methods R2 

RGB and L*a*b* values Linear regression 0.873 

RGB and L*a*b* values SVR (linear) 0.739 

RGB and L*a*b* values SVR (polynomial) 0.571 

RGB,L*a*b* values SVR (radial basis function) 0.739 
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Table 4.34 R2 values of different methods for predicting brix values using RGB and  

  L*a*b* color features (continued) 

Features Methods R2 

RGB, L*a*b* values KNN (k=3) 0.947 

RGB,L*a*b* values KNN (k=5) 0.869 

RGB,L*a*b* values KNN (k=7) 0.847 

 

 4.4.1.1 Use Linear Regression to Predict Brix Values from RGB and 

L*a*b* Color Values 

 

 The following equation is the result of applying linear regression to 

predict Brix values: 

 

PredictedBrixvalue=(R*0.362)+(G*-0.363)+(B*0.125)+(L*0.336)+ 

(a*0.155)+(b*0.285)+7.772 

 

(4-7) 

 

 The Brix prediction using RGB and L*a*b* color values yielded an 

R2 of 0.873. Table 4.35 displays the prediction errors of the linear regression that 

predicts Brix values based on RGB and L*a*b* color values. The absolute error, relative 

error, percentage error, and their corresponding standard deviations were calculated 

from Class 0 to Class 6. The absolute errors of the classes ranged from 1.2062 to 2.5345, 

and the overall average absolute error of all classes was 2.0588, showing a certain gap 

between the predicted and actual values. 

 

Table 4.35 Errors when using linear regression to predict Brix values from RGB and  

   L*a*b* color values 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 
error 

1.8553  2.4430  2.4803  2.5345  1.2062  1.7287  2.1612  2.0588  

Standard 

deviation 
1.0916  1.9878  1.3091  1.2969  0.9829  1.5366  0.0800  1.4351  

Relative 
error 

0.5564  0.5001  0.2250  0.1503  0.0586  0.0767  0.0767  0.2423  
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Table 4.35 Errors when using linear regression to predict Brix values from RGB and  

   L*a*b* color values (continued) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Standard 

deviation 
0.3339  0.4282  0.1531  0.0817  0.0461  0.0651  0.0800  0.2847  

Percentage 
error 

55.6365  50.0060  22.5026  15.0276  5.8625  7.6651  11.0390  24.2335  

Standard 

deviation 
33.3913  42.8183  15.3111  8.1740  4.6074  6.5089  7.9959  28.4683  

 

 Figure 4.27 illustrates the outcomes of applying linear regression to 

predict values based on RGB and L*a*b* color values. The obtained R2 value of 0.873 

indicated a certain relationship between measured and predicted values. Linear 

regression can reflect the overall trend in predicting Brix values, but its accuracy is 

limited, and some predicted values deviate significantly from measured values. 

 

 
Figure 4.27 Graphs of measured and predicted Brix values from RGB and L*a*b* 

color values when using linear regression 
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 4.4.1.2 Use SVR (radial basis function) to Predict Brix Values from 

RGB and L*a*b* Color Values 

 

 Table 4.36 shows that SVR with an RBF kernel achieved moderate 

overall error but exhibited high absolute error in certain classes, such as Class 0 (5.4431) 

and Class 1 (3.7961) 

 

Table 4.36 Brix prediction errors when using SVR (radial basis kernel) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
5.4431  3.7961  2.1510  1.3806  0.8562  2.1798  1.2062  2.4206  

Standard 
deviation 

4.1375  2.7370  1.5682  1.1798  0.8891  1.2561  0.0596  2.5995  

Relative 

error 
1.6270  0.7647  0.1974  0.0810  0.0397  0.0981  0.0981  0.4171  

Standard 
deviation 

1.3297  0.6002  0.1697  0.0723  0.0398  0.0538  0.0596  0.7834  

Percentage 

error 
162.704  76.4659  19.7353  8.0994  3.9657  9.8072  6.1593  41.7138  

Standard 
deviation 

132.969  60.0169  16.9729  7.2291  3.9786  5.3808  5.9570  78.3378  

 

 Figure 4.28 shows the effectiveness of using the SVR (radial basis 

kernel) model to predict Brix values. The R2 value was 0.739. When the Brix values 

were low, the deviation between the predicted value and the measured value was very 

high. The predictive performance of this model was relatively poor in a low Brix value 

region. 
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Figure 4.28 Graphs of measured and predicted Brix values when using SVR  

(radial basis kernel) 

 

 4.4.1.3 Use KNN (k=3) to Predict Brix Values from RGB and L*a*b* 

Color Values 

 

 Table 4.37 displays the errors when using the KNN (k=3) for Brix 

prediction. The average absolute error for all classes was 1.0944, and the percentage 

error was 12.810. The standard deviation of class 6 was extremely low compared to 

those of other classes. Overall, the KNN (k=3) exhibite smaller errors and higher 

stability in predicting Brix values, with lower errors and better prediction performance 

than other methods. 

 

Table 4.37 Errors when using KNN (k=3) to predict Brix values from RGB color values 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.8511  0.9739  1.2839  1.2413  0.7362  1.4185  0.6746  1.0944  

Standard 
deviation 

1.1191  1.0486  1.2300  0.6216  0.9195  1.3087  0.0284  1.1779  

Relative 

error 
0.2406  0.1678  0.1104  0.0714  0.0346  0.0625  0.0625  0.1281  

Standard 

deviation 
0.3193  0.1815  0.0984  0.0365  0.0426  0.0547  0.0284  0.2757  

Percentage 

error 
24.061  16.780  11.035  7.1358  3.4584  6.2516  3.5460  12.810  
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Table 4.37 Errors when using KNN (k=3) to predict Brix values from RGB color values 

                  (continued) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Standard 

deviation 
31.927  18.146  9.8393  3.6470  4.2593  5.4743  2.8398  27.573  

 

 Figure 4.29 shows the results of employing the KNN (k=3) to forecast 

the Brix value based on RGB and L*a*b* values. The figure illustrates that the model 

closely adheres to the trend of the measured values. This indicated that the KNN could 

provide high accuracy in predicting the Brix values. The attained R2 value was 0.947, 

indicating robust fitting capability. 

  

 

Figure 4.29 Graphs of measured and predicted Brix values when using KNN (k=3) 

 

4.4.2 Comparison of Different Methods for Predicting pH Values Using 

RGB and L*a*b* Color Features 

 

Table 4.38 compares the R² values of various methods for predicting pH values 

using RGB and L*a*b* color features. Among the methods evaluated, SVR with a radial 

basis function kernel achieved the highest R² value of 0.873, demonstrating its superior 

performance in pH prediction. KNN (k=3) also performed well, with an R² value of 

0.860. Linear regression and SVR with linear and polynomial kernels showed R² values 
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of 0.776, 0.743, and 0.729, respectively. However, KNN with higher k values (k = 5 and 

k = 7) performed less effectively, with R² values of 0.608 and 0.658, respectively. 

 

Based on these results, further analysis will focus on the prediction errors 

associated with SVR (radial basis function kernel), KNN (k=3), and linear regression to 

better understand their predictive capabilities for pH values. 

 

Table 4.38 R2 values of different methods for predicting pH values using RGB and  

                  L*a*b* color features 

Features Methods R2 

RGB,L*a*b* values Linear regression 0.776 

RGB,L*a*b* values SVR (linear) 0.743 

RGB,L*a*b* values SVR (polynomial) 0.729 

RGB,L*a*b* values SVR (radial basis function) 0.873 

RGB,L*a*b* values KNN (k=3) 0.860 

RGB,L*a*b* values KNN (k=5) 0.608 

RGB,L*a*b* values KNN (k=7) 0.658 

 

 4.4.2.1 Use Linear Regression to Predict pH Values from RGB and 

L*a*b* Color Values 

 

 The equation derived from the application of linear regression to 

predict Brix values is as follows: 

 

pH value=(R*0.21)+(G*-0.27)+(B*0.009)+(L*-0.22)+(a*-.001) +(b*0.009) 

+5.377 

 

 

(4-8) 

 

 Table 4.39 shows that linear regression achieved small and stable 

errors in predicting pH values, with the absolute error ranging from 0.0664 (Class 4) to 

0.2173 (Class 6) and a moderate overall standard deviation of 2.5795%. 
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Table 4.39 pH prediction errors when using linear regression 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.2036  0.1330  0.1717  0.1630  0.0664  0.1402  0.2173  0.1548  

Standard 

deviation 
0.1193  0.0852  0.1076  0.0833  0.0534  0.1176  0.0368  0.1205  

Relative 

error 
0.0509  0.0305  0.0380  0.0356  0.0137  0.0280  0.0280  0.0337  

Standard 

deviation 
0.0314  0.0194  0.0236  0.0183  0.0108  0.0234  0.0368  0.0258  

Percentage 

error 
5.0943  3.0497  3.7971  3.5577  1.3716  2.7994  3.9994  3.3689  

Standard 

deviation 
3.1402  1.9382  2.3608  1.8349  1.0825  2.3426  3.6768  2.5795  

 

 Figure 4.30 shows the use of a linear regression model to predict the 

pH values based on RGB and L*a*b* color values. The red dots represented the 

measured pH value, while the blue dots represented the predicted value. The R² was 

0.776, indicating a high correlation between the predicted and actual values. 

 

 

Figure 4.30 Graphs of measured and predicted pH values from RGB and L*a*b*  

color values when using linear regression 
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 4.4.2.2 Use SVR (radial basis function) to Predict pH Values from 

RGB and L*a*b* Color Values 

 

 Table 4.40 shows the errors in predicting pH values using the SVR 

(radial basis kernel). The absolute errors ranged from 0.0541 to 0.1569 for different 

banana classes, and an overall average absolute error was 0.1012. The error when 

applying the SVR (radial basis kernel) found in each class was quite small. The overall 

performance of the model in pH prediction was better than those of SVR (linear kernel) 

and SVR (polynomial kernel). 

 

Table 4.40 pH prediction errors when using SVR (radial basis kernel) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.1569  0.0877  0.0541  0.1025  0.0628  0.1262  0.1317  0.1012  

Standard 

deviation 
0.1473  0.0708  0.0390  0.0920  0.0401  0.0713  0.0228  0.0951  

Relative 

error 
0.0396  0.0202  0.0119  0.0225  0.0130  0.0251  0.0251  0.0222  

Standard 

deviation 
0.0388  0.0167  0.0086  0.0208  0.0082  0.0142  0.0228  0.0221  

Percentage 

error 
3.9635  2.0201  1.1950  2.2507  1.3033  2.5123  2.4293  2.2153  

Standard 

deviation 
3.8751  1.6659  0.8553  2.0821  0.8204  1.4212  2.2755  2.2090  

 

 Figure 4.31 shows the measurement and prediction results of pH using 

SVR (radial basis kernel). The model’s R2 value, which reaches 0.873, indicated that 

the predicted and measured values agreed quite well. Even so, there were minor 

variations between the measured and predicted values. 
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Figure 4.31 Graphs of measured and predicted pH values when using SVR  

(RBF kernel) 

 

 4.4.2.3 Use KNN (k=3) to Predict pH Values from RGB and L*a*b* 

Color Values 

 

 Table 4.41 shows the errors when using the KNN (k=3) for pH 

prediction. The absolute error was relatively small in all banana classes, with an overall 

average absolute error of 0.0440. KNN (k=3) achieved a low relative and percentage 

error of 0.0218 and 2.1771, respectively. The results revealed that KNN was efficient 

for predicting pH values based on RGB and L*a*b* color features.  

 

Table 4.41 pH prediction errors when using KNN (k=3) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Absolute 

error 
0.1669  0.0915  0.0553  0.0672  0.0708  0.1715  0.0895  0.0988  

Standard 

deviation 
0.1841  0.0576  0.0462  0.0831  0.0690  0.1259  0.0146  0.1072  

Relative 

error 
0.0423  0.0209  0.0122  0.0148  0.0147  0.0344  0.0344  0.0218  

Standard 

deviation 
0.0481  0.0132  0.0102  0.0187  0.0144  0.0256  0.0146  0.0255  
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Table 4.41 pH prediction errors when using KNN (k=3) (continued) 

 
class 0 class 1 class 2 class 3 class 4 class 5 class 6 

All 

classes 

Percentage 

error 
4.2268  2.0921  1.2220  1.4775  1.4690  3.4413  1.6494  2.1771  

Standard 

deviation 
4.8083  1.3166  1.0171  1.8728  1.4388  2.5646  1.4639  2.5491  

 

 Figure 4.32 shows the results of using the KNN (k=3) to predict the 

pH value based on RGB and L*a*b* values. The obtained R2 value was 0.860, 

indicating that the model explains 85.97% of the data changes. Compared with the 

previous linear regression and SVR, it is only lower than that of the SVR (radial basis 

function) model. 

 

 

Figure 4.32 Graphs of measured and predicted Brix values when using KNN (k=3) 

 

 

  



 

Chapter 5 

 

Conclusion and Recommendations 

 

5.1 Conclusion 

 

 This study investigated the use of various machine learning models for banana 

ripeness classification, Brix (sweetness), and pH prediction. The research background 

indicated that the increasing global demand for fruit quality has rendered traditional 

manual detection and classification methods unsuitable for large-scale production due 

to their time-consuming, subjective, and ineffective nature. Therefore, the study 

concentrated on machine learning-based classification and prediction systems to achieve 

high accuracy in banana ripeness classification and to predict internal fruit quality, such 

as Brix and pH values. The work was divided into two main parts. 

 

 The first part studied and compared the performance of four machine learning 

classifiers—MobileNet, ResNet50, a simple CNN, and VGG16—in banana 

ripeness classification tasks and concludes that MobileNet performed the best among all 

models, achieving an accuracy of 98.45%, demonstrating its superiority in banana 

ripeness classification. Although VGG16 and CNN also demonstrated strong classification 

capabilities, achieving accuracies of 96.82% and 95.70%, respectively, they were slightly 

inferior to MobileNet in terms of efficiency and performance. In contrast, ResNet50 

performs relatively poorly, with an accuracy rate of only 92.43%.  

 

 The second part used a variety of machine learning algorithms to predict Brix 

and pH, including linear regression, SVR, and KNN. The first method predicted Brix 

and pH values based on the softmax features extracted by MobileNet. The results 

revealed that KNN performed the best at predicting Brix values, with an R² value of 

0.984. It did better than linear regression (R² = 0.958) and SVR (R² values for different 

kernel functions ranging from 0.925 to 0.952). KNN also performed the best in pH 
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prediction, with an R² value of 0.972. This indicated that KNN can more accurately 

predict Brix and pH values in prediction tasks based on softmax features.  

 

 This study evaluated machine learning models for predicting Brix and pH 

values using RGB, L*a*b*, and combined RGB and L*a*b* color features measured 

from one point on a banana. The results indicated that there were significant differences 

in the performance of different methods when predicting pH and Brix values. For pH 

prediction, when using L*a*b* features, KNN (k=3) performed the best. SVR with a 

radial basis kernel obtained a rather high R² of 0.819. When using RGB and L*a*b* 

features, the SVR (radial basis kernel) achieved the best performance at 0.873. For Brix 

value prediction, KNN performed well with an R² value of 0.941. Overall, KNN 

performs outstandingly in Brix prediction. In contrast, the performance of linear 

regression, SVR using a linear kernel, and SVR using a polynomial kernel was poorer. 

These results emphasized the superior predictive ability of the KNN when using the 

combined RGB and L*a*b* features. 

 

5.2 Recommendations    

 

5.2.1 Limitations 

 

Due to the limited amount of image data in certain ripeness stages, the 

performance of the model may decrease when dealing with imbalanced data. This study 

predicts Brix and pH values based solely on the RGB and L*a*b* color values of a 

single location on bananas. Although these color features can, to some extent, reflect 

the internal quality of bananas, they may not be sufficient to capture more complex 

nonlinear relationships. 

  

This study only focused on the detection and analysis of individual bananas, 

while in practical applications, bananas are usually transported and sold in whole 

bundles. Due to the possibility of individuals with different maturity levels in whole 

bundles of bananas, the predicted results of individual bananas may not accurately 
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reflect the average maturity level of the whole bundle of bananas. The object of this 

study was only Musa acuminata bananas. 

 

5.2.2 Future Outlook 

 

In the future, more banana images at different ripeness stages should be 

collected to ensure a more balanced distribution of various types of data. At the same 

time, data on different varieties of bananas and other fruits can be added to improve the 

generalization ability of the model. To enhance the adaptability of the model in practical 

environments, data should be collected under various lighting conditions, backgrounds, 

and shooting angles. Future research should further expand on existing work by 

introducing predictions of mineral composition, in addition to predicting Brix and pH 

values. This will help to more comprehensively evaluate the nutritional quality of fruits 

and improve accurate prediction of fruit ripeness and internal nutritional components. 

 

Although different banana varieties may have differences in appearance and 

maturation process, this study suggested that color features such as RGB and L*a*b* 

have high sensitivity in predicting the internal quality of bananas, such as Brix and pH 

value. This discovery showed that these color features could serve as reliable indicators 

for predicting internal quality across varieties, and this method can be extended to other 

similar banana varieties. 
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