Please use this identifier to cite or link to this item:
https://rsuir-library.rsu.ac.th/handle/123456789/2490
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wongsakorn Charoenpanitser | - |
dc.date.accessioned | 2024-07-19T06:00:58Z | - |
dc.date.available | 2024-07-19T06:00:58Z | - |
dc.date.issued | 2014 | - |
dc.identifier.uri | https://rsuir-library.rsu.ac.th/handle/123456789/2490 | - |
dc.description.sponsorship | Research Institute of Rangsit University | en_US |
dc.language.iso | other | en_US |
dc.publisher | Research Institute of Rangsit University | en_US |
dc.subject | Graph theory -- Research | en_US |
dc.subject | Computer graphics -- Research | en_US |
dc.title | Research Project Report (k,t)-choosability of graphs | en_US |
dc.title.alternative | การระบายสีแบบ (k,t) ของกราฟ | en_US |
dc.type | Other | en_US |
dc.description.other-abstract | A (k, t)-list assignment L of a graph G is a mapping which assigns a set of size k to each vertex v of G and |Sv∈V (G) L(v)| = t. A graph G is (k, t)-choosable if G has a proper coloring f such that f(v) ∈ L(v) for each (k, t)-list assignment L. In 2011, Charoenpanitseri, Punnim and Uiyyasathian gave a characterization of (k, t)-choosability of n-vertex graphs when t ≥ kn − k2 − 2k + 1 and left open problems when t ≤ kn − k2 − 2k Recently, Ruksasakchai and Nakprasit obtain the results when t = kn − k2 − 2k. In this research report, we extend the results to case t = kn − k2 − 2k − 1. | en_US |
Appears in Collections: | ICT-Research |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
WONGSAKORN CHAROENPANITSERI.pdf | 804.05 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.